15 research outputs found
The pyrogeography of eastern boreal Canada from 1901 to 2012 simulated with the LPJ-LMfire model
Wildland fires are the main natural disturbance shaping forest structure and composition in eastern boreal Canada. On average, more than 700 000 ha of forest burns annually and causes as much as CAD 2.9 million worth of damage. Although we know that occurrence of fires depends upon the coincidence of favourable conditions for fire ignition, propagation, and fuel availability, the interplay between these three drivers in shaping spatiotemporal patterns of fires in eastern Canada remains to be evaluated. The goal of this study was to reconstruct the spatiotemporal patterns of fire activity during the last century in eastern Canada's boreal forest as a function of changes in lightning ignition, climate, and vegetation. We addressed this objective using the dynamic global vegetation model LPJ-LMfire, which we parametrized for four plant functional types (PFTs) that correspond to the prevalent tree genera in eastern boreal Canada (Picea, Abies, Pinus, Populus). LPJ-LMfire was run with a monthly time step from 1901 to 2012 on a 10 km2 resolution grid covering the boreal forest from Manitoba to Newfoundland. Outputs of LPJ-LMfire were analyzed in terms of fire frequency, net primary productivity (NPP), and aboveground biomass. The predictive skills of LPJ-LMfire were examined by comparing our simulations of annual burn rates and biomass with independent data sets. The simulation adequately reproduced the latitudinal gradient in fire frequency in Manitoba and the longitudinal gradient from Manitoba towards southern Ontario, as well as the temporal patterns present in independent fire histories. However, the simulation led to the underestimation and overestimation of fire frequency at both the northern and southern limits of the boreal forest in Québec. The general pattern of simulated total tree biomass also agreed well with observations, with the notable exception of overestimated biomass at the northern treeline, mainly for PFT Picea. In these northern areas, the predictive ability of LPJ-LMfire is likely being affected by the low density of weather stations, which leads to underestimation of the strength of fire- weather interactions and, therefore, vegetation consumption during extreme fire years. Agreement between the spatiotemporal patterns of fire frequency and the observed data across a vast portion of the study area confirmed that fire therein is strongly ignition limited. A drier climate coupled with an increase in lightning frequency during the second half of the 20th century notably led to an increase in fire activity. Finally, our simulations highlighted the importance of both climate and fire in vegetation: despite an overarching CO2- induced enhancement of NPP in LPJ-LMfire, forest biomass was relatively stable because of the compensatory effects of increasing fire activity
Assessing changes in global fire regimes
PAGES, Past Global Changes, is funded by the Swiss Academy of Sciences and the Chinese Academy of Sciences and supported in kind by the University of Bern, Switzerland. Financial support was provided by the U.S. National Science Foundation award numbers 1916565, EAR-2011439, and EAR-2012123. Additional support was provided by the Utah Department of Natural Resources Watershed Restoration Initiative. SSS was supported by Brigham Young University Graduate Studies. MS was supported by National Science Centre, Poland (grant no. 2018/31/B/ST10/02498 and 2021/41/B/ST10/00060). JCA was supported by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 101026211. PF contributed within the framework of the FCT-funded project no. UIDB/04033/2020. SGAF acknowledges support from Trond Mohn Stiftelse (TMS) and University of Bergen for the startup grant ‘TMS2022STG03’. JMP participation in this research was supported by the Forest Research Centre, a research unit funded by Fundação para a Ciência e a Tecnologia I.P. (FCT), Portugal (UIDB/00239/2020). A.-LD acknowledge PAGES, PICS CNRS 06484 project, CNRS-INSU, Région Nouvelle-Aquitaine, University of Bordeaux DRI and INQUA for workshop support.Background The global human footprint has fundamentally altered wildfire regimes, creating serious consequences for human health, biodiversity, and climate. However, it remains difficult to project how long-term interactions among land use, management, and climate change will affect fire behavior, representing a key knowledge gap for sustainable management. We used expert assessment to combine opinions about past and future fire regimes from 99 wildfire researchers. We asked for quantitative and qualitative assessments of the frequency, type, and implications of fire regime change from the beginning of the Holocene through the year 2300. Results Respondents indicated some direct human influence on wildfire since at least ~ 12,000 years BP, though natural climate variability remained the dominant driver of fire regime change until around 5,000 years BP, for most study regions. Responses suggested a ten-fold increase in the frequency of fire regime change during the last 250 years compared with the rest of the Holocene, corresponding first with the intensification and extensification of land use and later with anthropogenic climate change. Looking to the future, fire regimes were predicted to intensify, with increases in frequency, severity, and size in all biomes except grassland ecosystems. Fire regimes showed different climate sensitivities across biomes, but the likelihood of fire regime change increased with higher warming scenarios for all biomes. Biodiversity, carbon storage, and other ecosystem services were predicted to decrease for most biomes under higher emission scenarios. We present recommendations for adaptation and mitigation under emerging fire regimes, while recognizing that management options are constrained under higher emission scenarios. Conclusion The influence of humans on wildfire regimes has increased over the last two centuries. The perspective gained from past fires should be considered in land and fire management strategies, but novel fire behavior is likely given the unprecedented human disruption of plant communities, climate, and other factors. Future fire regimes are likely to degrade key ecosystem services, unless climate change is aggressively mitigated. Expert assessment complements empirical data and modeling, providing a broader perspective of fire science to inform decision making and future research priorities.Peer reviewe
Une vision pluridisciplinaire des sécheresses en forêt : comment les quantifier, évaluer leurs impacts et s’y adapter
This article provides a structured presentation of recent and ongoing research by four young female researchers about soil water deficit in French forests – a phenomenon that is growing increasingly frequent and/or intense and disrupts the proper functioning of these ecosystems. The management of the current unprecedented drought-induced crisis requires i) a quantification and a mapping of soil water deficits in French forests, ii) an evaluation of the impacts of water deficit on primary and secondary tree growth, and iii) an evaluation of several adaptation strategies that could be implemented to reduce stand vulnerability, depending on the stake (timber production, carbon sequestration) and the severity of these impacts. These strategies may be or not be profitable to the forest owner.Cet article propose une présentation structurée de travaux récents et en cours de quatre jeunes chercheuses sur le thème de la sécheresse édaphique en forêt en France métropolitaine, un phénomène qui devient de plus en plus fréquent et/ou intense perturbant le bon fonctionnement de ces écosystèmes. La gestion d’une crise sans précédent induite par des sécheresses récentes passe tout d’abord par la quantification et la cartographie de cet aléa e, puis par l’évaluation et la compréhension des impacts induits par ce déficit hydrique sur la croissance primaire et secondaire des arbres. Enfin, diverses stratégies d'adaptation peuvent alors être mises en place afin de réduire la vulnérabilité des peuplements, en fonction des enjeux exposés (production de bois, séquestration de carbone) et de la gravité de ces impacts. Ces stratégies peuvent être ou non rentables pour le propriétaire forestier. Messages clésLes sécheresses édaphiques deviennent de plus en plus fréquentes en France.La gestion des sécheresses nécessite une meilleure cartographie de ces aléas.Des stratégies peuvent être mises en place pour réduire la vulnérabilité des peuplements
Increases in heat-induced tree mortality could drive reductions of biomass resources in Canada’s managed boreal forest
International audienc
The pyrogeography of eastern boreal Canada from 1901 to 2012 simulated with the LPJ-LMfire model
Wildland fires are the main natural disturbance shaping forest structure and composition in eastern boreal Canada. On average, more than 700 000 ha of forest burns annually and causes as much as CAD 2.9 million worth of damage. Although we know that occurrence of fires depends upon the coincidence of favourable conditions for fire ignition, propagation, and fuel availability, the interplay between these three drivers in shaping spatiotemporal patterns of fires in eastern Canada remains to be evaluated. The goal of this study was to reconstruct the spatiotemporal patterns of fire activity during the last century in eastern Canada's boreal forest as a function of changes in lightning ignition, climate, and vegetation. We addressed this objective using the dynamic global vegetation model LPJ-LMfire, which we parametrized for four plant functional types (PFTs) that correspond to the prevalent tree genera in eastern boreal Canada (Picea, Abies, Pinus, Populus). LPJ-LMfire was run with a monthly time step from 1901 to 2012 on a 10 km2 resolution grid covering the boreal forest from Manitoba to Newfoundland. Outputs of LPJ-LMfire were analyzed in terms of fire frequency, net primary productivity (NPP), and aboveground biomass. The predictive skills of LPJ-LMfire were examined by comparing our simulations of annual burn rates and biomass with independent data sets. The simulation adequately reproduced the latitudinal gradient in fire frequency in Manitoba and the longitudinal gradient from Manitoba towards southern Ontario, as well as the temporal patterns present in independent fire histories. However, the simulation led to the underestimation and overestimation of fire frequency at both the northern and southern limits of the boreal forest in Québec. The general pattern of simulated total tree biomass also agreed well with observations, with the notable exception of overestimated biomass at the northern treeline, mainly for PFT Picea. In these northern areas, the predictive ability of LPJ-LMfire is likely being affected by the low density of weather stations, which leads to underestimation of the strength of fire- weather interactions and, therefore, vegetation consumption during extreme fire years. Agreement between the spatiotemporal patterns of fire frequency and the observed data across a vast portion of the study area confirmed that fire therein is strongly ignition limited. A drier climate coupled with an increase in lightning frequency during the second half of the 20th century notably led to an increase in fire activity. Finally, our simulations highlighted the importance of both climate and fire in vegetation: despite an overarching CO2- induced enhancement of NPP in LPJ-LMfire, forest biomass was relatively stable because of the compensatory effects of increasing fire activity
Dynamically simulating spruce budworm in eastern Canada and its interactions with wildfire
International audienceEastern Spruce Budworm (ESBW) is a major agent of disturbance in Eastern Canada’s boreal forests. Outbreaks have historically led to widespread defoliation of its preferred host trees, fir and spruce species, leading to high rates of mortality. This in turn can result in significant economic losses and enhancement of fire potential in the region. Representation of such biotic disturbance has rarely been included in Dynamic Global Vegetation Models (DGVM), which have become essential tools in understanding and predicting forest dynamics in present and future contexts. We present novel representation of host-specific defoliation in a DGVM (LPJ-LMfire), to better represent disturbance regimes in the boreal forest of eastern Canada. Using host foliage density to trigger outbreak, we were able to calibrate and simulate general spatial patterns of defoliation relative to historical aerial sketch map data. Return intervals were thus sensitive to the growth rates of host trees. Modeled return intervals tended to be significantly longer than 30 years, the approximate observed return interval. A factorial experiment was performed on the interactions of ESBW with wildfire, which was found to be slightly enhanced in terms of burned areas after outbreaks due to increased fuel loads. Interactions between ESBW and fire were found to have higher interaction strength in the drier Western region of the boreal forest. Our study demonstrates that biotic disturbance and its interaction with wildfire can be effectively simulated in a DGVM. We show that bottom-up climatic controls are sufficient to drive simulated spatiotemporal patterns of ESBW that can be calibrated to generally match historical observations
Challenges for the Sustainable Management of the Boreal Forest Under Climate Change
The increasing effects of climate and global change oblige ecosystem-based management to adapt forestry practices to deal with uncertainties. Here we provide an overview to identify the challenges facing the boreal forest under projected future change, including altered natural disturbance regimes, biodiversity loss, increased forest fragmentation, the rapid loss of old-growth forests, and the need to develop novel silvicultural approaches. We specifically address subjects previously lacking from the ecosystem-based management framework, e.g., Indigenous communities, social concerns, ecological restoration, and impacts on aquatic ecosystems. We conclude by providing recommendations for ensuring the successful long-term management of the boreal biome facing climate change.ISSN:1574-091