12 research outputs found

    Deregulation of the notch signaling pathway N B-cell chronic lymphocytic leukemia

    No full text
    Title from PDF of title page (University of Missouri--Columbia, viewed on August 23, 2012).The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.Thesis advisors: Charles W. Caldwell M.D., PhD and Lynda B. Bennett PhDIncludes bibliographical references.M.S. University of Missouri-Columbia 2011."May 2011"[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] B-cell Chronic Lymphocytic Leukemia (B-CLL) is the most common hematological malignancy in United States[1], characterized by CD5+ B-lymphocytes in peripheral blood. Deregulation of the Notch signaling pathway has been suggested to contribute to B-CLL pathogenesis [2-4]. Our objective was to characterize the differential expression of the Notch pathway genes in B-CLL cell lines as compared to normal B-cells and to determine if inhibiting the Notch pathway using [lambda]-secretase inhibitors (GSIs would lead to increased death in B-CLL cells. We observed over-expression of Notch pathway genes in three B-CLL cell lines. Treatment with either of the GSIs, DAPT(N-[N-(3, 5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl Ester) or Compound E, failed to have any effect on proliferation or death of these cells. Moreover,there was no alteration in transcription of downstream Notch target genes Hairy and enhancer of split 1, (HES1) Hairy/enhancer-of-split related with YRPW motif 1( HEY1), or Deltex homolog 1 (DTX1) in treated vs. untreated cells. These findings suggest that although Notch pathway genes seem to up regulated in B-B-CLL,inhibition of the pathway does not lead to cell death nor does it alter Notch target gene transcripton. One explanation could be that the Notch receptor is constitutively active in B-CLL as in other hematological malignancies like Tcell-Acute Lymphoblastic Leukemia (T-ALL)[5]. Alternatively, the survival of leukemic cells in B-CLL as well as transcription of the target genes examined, may be a combined result of signaling via the Notch and other signaling pathways such as Jak-STAT, Wnt and Sonic hedgehog, which have roles in B-CLL pathogenesis[6-10]

    Late onset asymptomatic pancreatic neuroendocrine tumor – A case report on the phenotypic expansion for MEN1

    Get PDF
    Abstract Background Multiple endocrine neoplasia type 1 (MEN1) is a hereditary cancer syndrome associated with several endocrine as well as non-endocrine tumors and is caused by mutations in the MEN1 gene. Primary hyperparathyroidism affects the majority of MEN1 individuals by age 50 years. Additionally, MEN1 mutations trigger familial isolated hyperparathyroidism. We describe a seemingly unaffected 76-year-old female who presented to our Genetics Clinic with a family history of primary hyperparathyroidism and the identification of a pathogenic MEN1 variant. Case Presentation The patient was a 76 year-old woman who appeared to be unaffected. She had a family history of a known MEN1 pathogenic variant. Molecular testing for the known MEN1 mutation c.1A > G, as well as, biochemical testing, MRI of the brain and abdomen were all performed using standard methods. Molecular testing revealed our patient possessed the MEN1 pathogenic variant previously identified in her two offspring. Physical exam revealed red facial papules with onset in her seventies, involving her cheeks, nose and upper lip. Formerly, she was diagnosed with rosacea by a dermatologist and noted no improvement with treatment. Clinically, these lesions appeared to be facial angiofibromas. Brain MRI was normal. However, an MRI of her abdomen revealed a 1.5 cm lesion at the tail of the pancreas with normal adrenal glands. Glucagon was mildly elevated and pancreatic polypeptide was nearly seven times the upper limit of the normal range. The patient underwent spleen sparing distal pancreatectomy and subsequent pathology was consistent with a well-differentiated pancreatic neuroendocrine tumor (pNET). Conclusions Age-related penetrance and variable expressivity are well documented in families with MEN1. It is thought that nearly all individuals with MEN1 manifest disease by age 40. We present a case of late-onset MEN1 in the absence of the most common feature, primary hyperparathyroidism, but with the presence of a pNET and cutaneous findings. This family expands the phenotype associated with the c.1A > G pathogenic variant and highlights the importance of providing comprehensive assessment of MEN1 mutation carriers in families that at first blush may appear to have isolated hyperparathyroidism

    The prevalence of diseases caused by lysosome-related genes in a cohort of undiagnosed patients

    No full text
    Lysosomal diseases (LD) comprise a group of approximately 60 hereditary conditions caused by progressive accumulation of metabolites due to defects in lysosomal enzymes and degradation pathways, which lead to a wide range of clinical manifestations. The estimated combined incidence of LD is between 1 in 4000 to 1 in 13,000 live births, with recent data from pilot newborn screening studies showing even higher incidence. We aimed to determine the prevalence of the classical LD and other diseases caused by lysosome-related genes in our cohort of diagnostic odyssey patients. The Individualized Medicine Clinic at Mayo Clinic is increasingly utilizing whole exome sequencing (WES) to determine the genetic etiology of undiagnosed Mendelian disease. From September 2012 to April 2017, WES results from 350 patients with unexplained symptoms were reviewed. Disease-causing variants were identified in MYO6, CLN6, LRBA, KCTD7, and ARSB revealing a genetic diagnosis of a LD in 8 individuals from 5 families. Based on our findings, lysosome-related disorders may be collectively common, reaching up to 1.5% prevalence in a cohort of patients with undiagnosed diseases presenting to a genetics clinic

    Further delineation of the rare GDACCF (global developmental delay, absent or hypoplastic corpus callosum, dysmorphic facies syndrome): genotype and phenotype of 22 patients with ZNF148 mutations.

    No full text
    BACKGROUND Pathogenic variants in the zinc finger protein coding genes are rare causes of intellectual disability and congenital malformations. Mutations in the ZNF148 gene causing GDACCF syndrome (global developmental delay, absent or hypoplastic corpus callosum, dysmorphic facies; MIM #617260) have been reported in five individuals so far. METHODS As a result of an international collaboration using GeneMatcher Phenome Central Repository and personal communications, here we describe the clinical and molecular genetic characteristics of 22 previously unreported individuals. RESULTS The core clinical phenotype is characterised by developmental delay particularly in the domain of speech development, postnatal growth retardation, microcephaly and facial dysmorphism. Corpus callosum abnormalities appear less frequently than suggested by previous observations. The identified mutations concerned nonsense or frameshift variants that were mainly located in the last exon of the ZNF148 gene. Heterozygous deletion including the entire ZNF148 gene was found in only one case. Most mutations occurred de novo, but were inherited from an affected parent in two families. CONCLUSION The GDACCF syndrome is clinically diverse, and a genotype-first approach, that is, exome sequencing is recommended for establishing a genetic diagnosis rather than a phenotype-first approach. However, the syndrome may be suspected based on some recurrent, recognisable features. Corpus callosum anomalies were not as constant as previously suggested, we therefore recommend to replace the term 'GDACCF syndrome' with 'ZNF148-related neurodevelopmental disorder'

    Clinical spectrum of STX1B-related epileptic disorders

    No full text
    Objective: The aim of this study was to expand the spectrum of epilepsy syndromes related to STX1B, encoding the presynaptic protein syntaxin-1B, and to establish genotype-phenotype correlations by identifying further disease-related variants. Methods: We used next generation sequencing in the framework of research projects and diagnostic testing. Clinical data and EEGs were reviewed, including already published cases. To estimate the pathogenicity of the variants, we used established and newly developed in silico prediction tools. Results: We describe fifteen new variants in STX1B which are distributed across the whole gene. We discerned four different phenotypic groups across the newly identified and previously published patients (49 in 23 families): 1) Six sporadic patients or families (31 affected individuals) with febrile and afebrile seizures with a benign course, generally good drug response, normal development and without permanent neurological deficits; 2) two patients of genetic generalized epilepsy without febrile seizures and cognitive deficits; 3) thirteen patients or families with intractable seizures, developmental regression after seizure onset and additional neuropsychiatric symptoms; 4) two patients with focal epilepsy. Nonsense mutations were found more often in benign syndromes, whereas missense variants in the SNARE motif of syntaxin-1B were associated with more severe phenotypes. Conclusion: These data expand the genetic and phenotypic spectrum of STX1B-related epilepsies to a diverse range of epilepsies that span the ILAE classification. Variants in STX1B are protean, and able to contribute to many different epilepsy phenotypes, similar to SCN1A, the most important gene associated with fever-associated epilepsies

    Data from: Clinical spectrum of STX1B-related epileptic disorders

    No full text
    Objective: The aim of this study was to expand the spectrum of epilepsy syndromes related to STX1B, encoding the presynaptic protein syntaxin-1B, and establish genotype-phenotype correlations by identifying further disease-related variants. Methods: We used next generation sequencing in the framework of research projects and diagnostic testing. Clinical data and EEGs were reviewed, including already published cases. To estimate the pathogenicity of the variants, we used established and newly developed in silico prediction tools. Results: We describe 15 new variants in STX1B which are distributed across the whole gene. We discerned four different phenotypic groups across the newly identified and previously published patients (49 patients in 23 families): 1) Six sporadic patients or families (31 affected individuals) with febrile and afebrile seizures with a benign course, generally good drug response, normal development and without permanent neurological deficits; 2) two patients with genetic generalized epilepsy without febrile seizures and cognitive deficits; 3) 13 patients or families with intractable seizures, developmental regression after seizure onset and additional neuropsychiatric symptoms; 4) two patients with focal epilepsy. More often we found loss-of-function mutations in benign syndromes, whereas missense variants in the SNARE motif of syntaxin-1B were associated with more severe phenotypes. Conclusion: These data expand the genetic and phenotypic spectrum of STX1B-related epilepsies to a diverse range of epilepsies that span the ILAE classification. Variants in STX1B are protean and contribute to many different epilepsy phenotypes, similar to SCN1A, the most important gene associated with fever-associated epilepsies
    corecore