376 research outputs found

    ABERRANT TESTA SHAPE encodes a KANADI family member, linking polarity determination to separation and growth of Arabidopsis ovule integuments

    Get PDF
    The Arabidopsis aberrant testa shape (ats) mutant produces a single integument instead of the two integuments seen in wild-type ovules. Cellular anatomy and patterns of marker gene expression indicate that the single integument results from congenital fusion of the two integuments of the wild type. Isolation of the ATS locus showed it to encode a member of the KANADI (KAN) family of putative transcription factors, previously referred to as KAN4. ATS was expressed at the border between the two integuments at the time of their initiation, with expression later confined to the abaxial layer of the inner integument. In an inner no outer (ino) mutant background, where an outer integument does not form, the ats mutation led to amorphous inner integument growth. The kan1 kan2 double mutant exhibits a similar amorphous growth of the outer integument without affecting inner integument growth. We hypothesize that ATS and KAN1/KAN2 play similar roles in the specification of polarity in the inner and outer integuments, respectively, that parallel the known roles of KAN proteins in promoting abaxial identity during leaf development. INO and other members of the YABBY gene family have been hypothesized to have similar parallel roles in outer integument and leaf development. Together, these two hypotheses lead us to propose a model for normal integument growth that also explains the described mutant phenotypes

    Integrated Analysis of Market Transformation Scenarios with HyTrans

    Get PDF
    This report presents alternative visions of the transition of light-duty vehicle transportation in the United States from petroleum to hydrogen power. It is a supporting document to the U.S. Department of Energy's Summary Report, "Analysis of the Transition to a Hydrogen Economy and the Potential Hydrogen Infrastructure Requirements" (U.S. DOE, 2007). Three alternative early transition scenarios were analyzed using a market simulation model called HyTrans. The HyTrans model simultaneously represents the behavior of fuel suppliers, vehicle manufacturers and consumers, explicitly recognizing the importance of fuel availability and the diversity of vehicle choices to consumers, and dependence of fuel supply on the existence of market demand. Competitive market outcomes are simulated by means of non-linear optimization of social surplus through the year 2050. The three scenarios specify different rates and geographical distributions of market penetration for hydrogen fuel cell vehicles from 2012 through 2025. Scenario 1 leads to 2 million vehicles on U.S. roads by 2025, while Scenarios 2 and 3 result in 5 million and 10 million FCVs in use by 2025, respectively. The HyTrans model "costs out" the transition scenarios and alternative policies for achieving them. It then tests whether the scenarios, together with the achievement of the DOE's technology goals for fuel cell vehicles and hydrogen infrastructure technologies could lead to a sustainable transition to hydrogen powered transportation. Given the achievement of DOE's ambitious technology goals, all three scenarios appear to lead to a sustainable transition to hydrogen. In the absence of early transition deployment effort, no transition is likely to begin before 2045. The cumulative costs of the transition scenarios to the government range from 8billionto8 billion to 45 billion, depending on the scenario, the policies adopted and the degree of cost-sharing with industry. In the absence of carbon constraining policies, the transition to hydrogen achieves about the same reduction in CO2 emissions as a transition to advanced gasoline-electric hybrid vehicles. With significant carbon policy, drastic reductions in well-to-wheel CO2 emissions are possible. Energy transition modeling is a newly evolving field and much remains to be done to improve the utility of models like HyTrans

    Propionibacterium acnes bacteriophages display limited genetic diversity and broad killing activity against bacterial skin isolates.

    Get PDF
    UnlabelledInvestigation of the human microbiome has revealed diverse and complex microbial communities at distinct anatomic sites. The microbiome of the human sebaceous follicle provides a tractable model in which to study its dominant bacterial inhabitant, Propionibacterium acnes, which is thought to contribute to the pathogenesis of the human disease acne. To explore the diversity of the bacteriophages that infect P. acnes, 11 P. acnes phages were isolated from the sebaceous follicles of donors with healthy skin or acne and their genomes were sequenced. Comparative genomic analysis of the P. acnes phage population, which spans a 30-year temporal period and a broad geographic range, reveals striking similarity in terms of genome length, percent GC content, nucleotide identity (>85%), and gene content. This was unexpected, given the far-ranging diversity observed in virtually all other phage populations. Although the P. acnes phages display a broad host range against clinical isolates of P. acnes, two bacterial isolates were resistant to many of these phages. Moreover, the patterns of phage resistance correlate closely with the presence of clustered regularly interspaced short palindromic repeat elements in the bacteria that target a specific subset of phages, conferring a system of prokaryotic innate immunity. The limited diversity of the P. acnes bacteriophages, which may relate to the unique evolutionary constraints imposed by the lipid-rich anaerobic environment in which their bacterial hosts reside, points to the potential utility of phage-based antimicrobial therapy for acne.ImportancePropionibacterium acnes is a dominant member of the skin microflora and has also been implicated in the pathogenesis of acne; however, little is known about the bacteriophages that coexist with and infect this bacterium. Here we present the novel genome sequences of 11 P. acnes phages, thereby substantially increasing the amount of available genomic information about this phage population. Surprisingly, we find that, unlike other well-studied bacteriophages, P. acnes phages are highly homogeneous and show a striking lack of genetic diversity, which is perhaps related to their unique and restricted habitat. They also share a broad ability to kill clinical isolates of P. acnes; phage resistance is not prevalent, but when detected, it appears to be conferred by chromosomally encoded immunity elements within the host genome. We believe that these phages display numerous features that would make them ideal candidates for the development of a phage-based therapy for acne

    Stationary solutions of the one-dimensional nonlinear Schroedinger equation: II. Case of attractive nonlinearity

    Full text link
    All stationary solutions to the one-dimensional nonlinear Schroedinger equation under box or periodic boundary conditions are presented in analytic form for the case of attractive nonlinearity. A companion paper has treated the repulsive case. Our solutions take the form of bounded, quantized, stationary trains of bright solitons. Among them are two uniquely nonlinear classes of nodeless solutions, whose properties and physical meaning are discussed in detail. The full set of symmetry-breaking stationary states are described by the CnC_{n} character tables from the theory of point groups. We make experimental predictions for the Bose-Einstein condensate and show that, though these are the analog of some of the simplest problems in linear quantum mechanics, nonlinearity introduces new and surprising phenomena.Comment: 11 pages, 9 figures -- revised versio

    Fatally entangled right whales can die extremely slowly

    Get PDF
    Author Posting. © IEEE, 2006. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in Proceedings Oceans 2006, Boston, MA, USA, 3 pp, doi:10.1109/OCEANS.2006.306792.Unlike smaller marine mammals that lack the mass and power to break free from serious entanglements in fixed fishing gear, right whales can do so, but they are not always rope free. The remaining rope can gradually constrict one or more body parts and the resulting debilitation and ultimate death can take many months. Thus the practices that lead to these mortalities need to be viewed not only as a conflict between the cultural and socioeconomic value of a fishery versus a potential species extinction process, but also in terms of an extreme animal welfare issue.Supported by NOAA NA04NMF4720392, Woods Hole Oceanographic Institution Ocean Life Institute, and the North Pond Foundation

    Stationary solutions of the one-dimensional nonlinear Schroedinger equation: I. Case of repulsive nonlinearity

    Full text link
    All stationary solutions to the one-dimensional nonlinear Schroedinger equation under box and periodic boundary conditions are presented in analytic form. We consider the case of repulsive nonlinearity; in a companion paper we treat the attractive case. Our solutions take the form of stationary trains of dark or grey density-notch solitons. Real stationary states are in one-to-one correspondence with those of the linear Schr\"odinger equation. Complex stationary states are uniquely nonlinear, nodeless, and symmetry-breaking. Our solutions apply to many physical contexts, including the Bose-Einstein condensate and optical pulses in fibers.Comment: 11 pages, 7 figures -- revised versio

    Cluster M Mycobacteriophages Bongo, PegLeg, and Rey with Unusually Large Repertoires of tRNA Isotopes

    Full text link
    Genomic analysis of a large set of phages infecting the common hostMycobacterium smegmatis mc2155 shows that they span considerable genetic diversity. There are more than 20 distinct types that lack nucleotide similarity with each other, and there is considerable diversity within most of the groups. Three newly isolated temperate mycobacteriophages, Bongo, PegLeg, and Rey, constitute a new group (cluster M), with the closely related phages Bongo and PegLeg forming subcluster M1 and the more distantly related Rey forming subcluster M2. The cluster M mycobacteriophages have siphoviral morphologies with unusually long tails, are homoimmune, and have larger than average genomes (80.2 to 83.7 kbp). They exhibit a variety of features not previously described in other mycobacteriophages, including noncanonical genome architectures and several unusual sets of conserved repeated sequences suggesting novel regulatory systems for both transcription and translation. In addition to containing transfer-messenger RNA and RtcB-like RNA ligase genes, their genomes encode 21 to 24 tRNA genes encompassing complete or nearly complete sets of isotypes. We predict that these tRNAs are used in late lytic growth, likely compensating for the degradation or inadequacy of host tRNAs. They may represent a complete set of tRNAs necessary for late lytic growth, especially when taken together with the apparent lack of codons in the same late genes that correspond to tRNAs that the genomes of the phages do not obviously encode

    Pennsylvania Folklife Vol. 9, No. 1

    Get PDF
    • Half-Timbering in American Architecture • The Strouse Dance • Schuylkill Boatmen and Their Ways • Some Early Phases of the Philadelphia Mummers\u27 Parade • Fantasticals • Joseph Henry Dubbs as a Folklorist • About the Authors • Horse Companies in Montgomery County • Books Not for Burninghttps://digitalcommons.ursinus.edu/pafolklifemag/1000/thumbnail.jp

    Synthesis

    Get PDF
    Human activity in the last century has led to a substantial increase in nitrogen (N) emissions and deposition. This N deposition has reached a level that has caused or is likely to cause alterations to the structure and function of many ecosystems across the United States. One approach for quantifying the level of pollution that would be harmful to ecosystems is the critical loads approach. The critical load is dei ned as the level of a pollutant below which no detrimental ecological effect occurs over the long term according to present knowledge. The objective of this project was to synthesize current research relating atmospheric N deposition to effects on terrestrial and aquatic ecosystems in the United States and to identify empirical critical loads for atmospheric N deposition. The receptors that we evaluated included freshwater diatoms, mycorrhizal fungi and other soil microbes, lichens, herbaceous plants, shrubs, and trees. The main responses reported fell into two categories: (1) biogeochemical, and (2) individual species, population, and community responses. This report synthesizes current research relating atmospheric nitrogen (N) deposition to effects on terrestrial and aquatic ecosystems in the United States and to identify empirical critical loads for atmospheric N deposition. The report evaluates the following receptors: freshwater diatoms, mycorrhizal fungi and other soil microbes, lichens, herbaceous plants, shrubs, and trees. The main responses reported fell into two categories: (1) biogeochemical; and (2) individual species, population, and community responses. The range of critical loads for nutrient N reported for U.S. ecoregions, inland surface waters, and freshwater wetlands is 1 to 39 kg N ha-1 y-1. This range spans the range of N deposition observed over most of the country. The empirical critical loads for N tend to increase in the following sequence for different life forms: diatoms, lichens and bryophytes, mycorrhizal fungi, herbaceous plants and shrubs, trees

    Synthesis

    Get PDF
    Human activity in the last century has led to a substantial increase in nitrogen (N) emissions and deposition. This N deposition has reached a level that has caused or is likely to cause alterations to the structure and function of many ecosystems across the United States. One approach for quantifying the level of pollution that would be harmful to ecosystems is the critical loads approach. The critical load is dei ned as the level of a pollutant below which no detrimental ecological effect occurs over the long term according to present knowledge. The objective of this project was to synthesize current research relating atmospheric N deposition to effects on terrestrial and aquatic ecosystems in the United States and to identify empirical critical loads for atmospheric N deposition. The receptors that we evaluated included freshwater diatoms, mycorrhizal fungi and other soil microbes, lichens, herbaceous plants, shrubs, and trees. The main responses reported fell into two categories: (1) biogeochemical, and (2) individual species, population, and community responses. This report synthesizes current research relating atmospheric nitrogen (N) deposition to effects on terrestrial and aquatic ecosystems in the United States and to identify empirical critical loads for atmospheric N deposition. The report evaluates the following receptors: freshwater diatoms, mycorrhizal fungi and other soil microbes, lichens, herbaceous plants, shrubs, and trees. The main responses reported fell into two categories: (1) biogeochemical; and (2) individual species, population, and community responses. The range of critical loads for nutrient N reported for U.S. ecoregions, inland surface waters, and freshwater wetlands is 1 to 39 kg N ha-1 y-1. This range spans the range of N deposition observed over most of the country. The empirical critical loads for N tend to increase in the following sequence for different life forms: diatoms, lichens and bryophytes, mycorrhizal fungi, herbaceous plants and shrubs, trees
    corecore