46 research outputs found

    Sensitivity Analysis of Median Lifetime on Radiation Risks Estimates for Cancer and Circulatory Disease amongst Never-Smokers

    Get PDF
    Radiation risks are estimated in a competing risk formalism where age or time after exposure estimates of increased risks for cancer and circulatory diseases are folded with a probability to survive to a given age. The survival function, also called the life-table, changes with calendar year, gender, smoking status and other demographic variables. An outstanding problem in risk estimation is the method of risk transfer between exposed populations and a second population where risks are to be estimated. Approaches used to transfer risks are based on: 1) Multiplicative risk transfer models -proportional to background disease rates. 2) Additive risk transfer model -risks independent of background rates. In addition, a Mixture model is often considered where the multiplicative and additive transfer assumptions are given weighted contributions. We studied the influence of the survival probability on the risk of exposure induced cancer and circulatory disease morbidity and mortality in the Multiplicative transfer model and the Mixture model. Risks for never-smokers (NS) compared to the average U.S. population are estimated to be reduced between 30% and 60% dependent on model assumptions. Lung cancer is the major contributor to the reduction for NS, with additional contributions from circulatory diseases and cancers of the stomach, liver, bladder, oral cavity, esophagus, colon, a portion of the solid cancer remainder, and leukemia. Greater improvements in risk estimates for NS s are possible, and would be dependent on improved understanding of risk transfer models, and elucidating the role of space radiation on the various stages of disease formation (e.g. initiation, promotion, and progression)

    Non-Targeted Effects and the Dose Response for Heavy Ion Tumorigenesis

    Get PDF
    There is no human epidemiology data available to estimate the heavy ion cancer risks experienced by astronauts in space. Studies of tumor induction in mice are a necessary step to estimate risks to astronauts. Previous experimental data can be better utilized to model dose response for heavy ion tumorigenesis and plan future low dose studies

    Space Radiation Cancer, Circulatory Disease and CNS Risks for Near Earth Asteroid and Mars Missions: Uncertainty Estimates for Never-Smokers

    Get PDF
    The uncertainties in estimating the health risks from galactic cosmic rays (GCR) and solar particle events (SPE) are a major limitation to the length of space missions and the evaluation of potential risk mitigation approaches. NASA limits astronaut exposures to a 3% risk of exposure induced cancer death (REID), and protects against uncertainties in risks projections using an assessment of 95% confidence intervals after propagating the error from all model factors (environment and organ exposure, risk coefficients, dose-rate modifiers, and quality factors). Because there are potentially significant late mortality risks from diseases of the circulatory system and central nervous system (CNS) which are less well defined than cancer risks, the cancer REID limit is not necessarily conservative. In this report, we discuss estimates of lifetime risks from space radiation and new estimates of model uncertainties are described. The key updates to the NASA risk projection model are: 1) Revised values for low LET risk coefficients for tissue specific cancer incidence, with incidence rates transported to an average U.S. population to estimate the probability of Risk of Exposure Induced Cancer (REIC) and REID. 2) An analysis of smoking attributable cancer risks for never-smokers that shows significantly reduced lung cancer risk as well as overall cancer risks from radiation compared to risk estimated for the average U.S. population. 3) Derivation of track structure based quality functions depends on particle fluence, charge number, Z and kinetic energy, E. 4) The assignment of a smaller maximum in quality function for leukemia than for solid cancers. 5) The use of the ICRP tissue weights is shown to over-estimate cancer risks from SPEs by a factor of 2 or more. Summing cancer risks for each tissue is recommended as a more accurate approach to estimate SPE cancer risks. 6) Additional considerations on circulatory and CNS disease risks. Our analysis shows that an individual s history of smoking exposure has a larger impact on GCR risk estimates than amounts of radiation shielding or age at exposure (amongst adults). Risks for never-smokers compared to the average U.S. population are estimated to be reduced between 30% and 60% dependent on model assumptions. Lung cancer is the major contributor to the reduction for never-smokers, with additional contributions from circulatory diseases and cancers of the stomach, liver, bladder, oral cavity and esophagus, and leukemia. The relative contribution of CNS risks to the overall space radiation detriment is potentially increased for never-smokers such as most astronauts. Problems in estimating risks for former smokers and the influence of second-hand smoke are discussed. Compared to the LET approximation, the new track structure derived radiation quality functions lead to a reduced risk for relativistic energy particles and increased risks for intermediate energy particles. Revised estimates for the number of safe days in space at solar minimum for heavy shielding conditions are described for never-smokers and the average U.S. population. Results show that missions to near Earth asteroids (NEA) or Mars violate NASA's radiation safety standards with the current levels of uncertainties. Greater improvements in risk estimates for never-smokers are possible, and would be dependent on improved understanding of risk transfer models, and elucidating the role of space radiation on the various stages of disease formation (e.g. initiation, promotion, and progression)

    NASA Models of Space Radiation Induced Cancer, Circulatory Disease, and Central Nervous System Effects

    Get PDF
    The risks of late effects from galactic cosmic rays (GCR) and solar particle events (SPE) are potentially a limitation to long-term space travel. The late effects of highest concern have significant lethality including cancer, effects to the central nervous system (CNS), and circulatory diseases (CD). For cancer and CD the use of age and gender specific models with uncertainty assessments based on human epidemiology data for low LET radiation combined with relative biological effectiveness factors (RBEs) and dose- and dose-rate reduction effectiveness factors (DDREF) to extrapolate these results to space radiation exposures is considered the current "state-of-the-art". The revised NASA Space Risk Model (NSRM-2014) is based on recent radio-epidemiology data for cancer and CD, however a key feature of the NSRM-2014 is the formulation of particle fluence and track structure based radiation quality factors for solid cancer and leukemia risk estimates, which are distinct from the ICRP quality factors, and shown to lead to smaller uncertainties in risk estimates. Many persons exposed to radiation on earth as well as astronauts are life-time never-smokers, which is estimated to significantly modify radiation cancer and CD risk estimates. A key feature of the NASA radiation protection model is the classification of radiation workers by smoking history in setting dose limits. Possible qualitative differences between GCR and low LET radiation increase uncertainties and are not included in previous risk estimates. Two important qualitative differences are emerging from research studies. The first is the increased lethality of tumors observed in animal models compared to low LET radiation or background tumors. The second are Non- Targeted Effects (NTE), which include bystander effects and genomic instability, which has been observed in cell and animal models of cancer risks. NTE's could lead to significant changes in RBE and DDREF estimates for GCR particles, and the potential effectiveness of radiation mitigator's. The NSRM- 2014 approaches to model radiation quality dependent lethality and NTE's will be described. CNS effects include both early changes that may occur during long space missions and late effects such as Alzheimer's disease (AD). AD effects 50% of the population above age 80-yr, is a degenerative disease that worsens with time after initial onset leading to death, and has no known cure. AD is difficult to detect at early stages and the small number of low LET epidemiology studies undertaken have not identified an association with low dose radiation. However experimental studies in mice suggest GCR may lead to early onset AD. We discuss modeling approaches to consider mechanisms whereby radiation would lead to earlier onset of occurrence of AD. Biomarkers of AD include amyloid beta (A(Beta)) plaques, and neurofibrillary tangles (NFT) made up of aggregates of the hyperphosphorylated form of the micro-tubule associated, tau protein. Related markers include synaptic degeneration, dentritic spine loss, and neuronal cell loss through apoptosis. Radiation may affect these processes by causing oxidative stress, aberrant signaling following DNA damage, and chronic neuroinflammation. Cell types to be considered in multi-scale models are neurons, astrocytes, and microglia. We developed biochemical and cell kinetics models of DNA damage signaling related to glycogen synthase kinase-3(Beta) (GSK3(Beta)) and neuroinflammation, and considered multi-scale modeling approaches to develop computer simulations of cell interactions and their relationships to A(Beta) plaques and NFTs. Comparison of model results to experimental data for the age specific development of A(Beta) plaques in transgenic mice will be discussed

    Probability of Causation for Space Radiation Carcinogenesis Following International Space Station, Near Earth Asteroid, and Mars Missions

    Get PDF
    Cancer risk is an important concern for International Space Station (ISS) missions and future exploration missions. An important question concerns the likelihood of a causal association between a crew members radiation exposure and the occurrence of cancer. The probability of causation (PC), also denoted as attributable risk, is used to make such an estimate. This report summarizes the NASA model of space radiation cancer risks and uncertainties, including improvements to represent uncertainties in tissue-specific cancer incidence models for never-smokers and the U.S. average population. We report on tissue-specific cancer incidence estimates and PC for different post-mission times for ISS and exploration missions. An important conclusion from our analysis is that the NASA policy to limit the risk of exposure-induced death to 3% at the 95% confidence level largely ensures that estimates of the PC for most cancer types would not reach a level of significance. Reducing uncertainties through radiobiological research remains the most efficient method to extend mission length and establish effective mitigators for cancer risks. Efforts to establish biomarkers of space radiation-induced tumors and to estimate PC for rarer tumor types are briefly discussed

    Space Radiation Cancer Risk Projections and Uncertainties - 2010

    Get PDF
    Uncertainties in estimating health risks from galactic cosmic rays greatly limit space mission lengths and potential risk mitigation evaluations. NASA limits astronaut exposures to a 3% risk of exposure-induced death and protects against uncertainties using an assessment of 95% confidence intervals in the projection model. Revisions to this model for lifetime cancer risks from space radiation and new estimates of model uncertainties are described here. We review models of space environments and transport code predictions of organ exposures, and characterize uncertainties in these descriptions. We summarize recent analysis of low linear energy transfer radio-epidemiology data, including revision to Japanese A-bomb survivor dosimetry, longer follow-up of exposed cohorts, and reassessments of dose and dose-rate reduction effectiveness factors. We compare these projections and uncertainties with earlier estimates. Current understanding of radiation quality effects and recent data on factors of relative biological effectiveness and particle track structure are reviewed. Recent radiobiology experiment results provide new information on solid cancer and leukemia risks from heavy ions. We also consider deviations from the paradigm of linearity at low doses of heavy ions motivated by non-targeted effects models. New findings and knowledge are used to revise the NASA risk projection model for space radiation cancer risks

    Induction of Chromosomal Aberrations at Fluences of Less Than One HZE Particle per Cell Nucleus

    Get PDF
    The assumption of a linear dose response used to describe the biological effects of high LET radiation is fundamental in radiation protection methodologies. We investigated the dose response for chromosomal aberrations for exposures corresponding to less than one particle traversal per cell nucleus by high energy and charge (HZE) nuclei. Human fibroblast and lymphocyte cells where irradiated with several low doses of <0.1 Gy, and several higher doses of up to 1 Gy with O (77 keV/ (long-s)m), Si (99 keV/ (long-s)m), Fe (175 keV/ (long-s)m), Fe (195 keV/ (long-s)m) or Fe (240 keV/ (long-s)m) particles. Chromosomal aberrations at first mitosis were scored using fluorescence in situ hybridization (FISH) with chromosome specific paints for chromosomes 1, 2 and 4 and DAPI staining of background chromosomes. Non-linear regression models were used to evaluate possible linear and non-linear dose response models based on these data. Dose responses for simple exchanges for human fibroblast irradiated under confluent culture conditions were best fit by non-linear models motivated by a non-targeted effect (NTE). Best fits for the dose response data for human lymphocytes irradiated in blood tubes were a NTE model for O and a linear response model fit best for Si and Fe particles. Additional evidence for NTE were found in low dose experiments measuring gamma-H2AX foci, a marker of double strand breaks (DSB), and split-dose experiments with human fibroblasts. Our results suggest that simple exchanges in normal human fibroblasts have an important NTE contribution at low particle fluence. The current and prior experimental studies provide important evidence against the linear dose response assumption used in radiation protection for HZE particles and other high LET radiation at the relevant range of low doses

    Evidence Report: Risk of Radiation Carcinogenesis

    Get PDF
    As noted by Durante and Cucinotta (2008), cancer risk caused by exposure to space radiation is now generally considered a main hindrance to interplanetary travel for the following reasons: large uncertainties are associated with the projected cancer risk estimates; no simple and effective countermeasures are available, and significant uncertainties prevent scientists from determining the effectiveness of countermeasures. Optimizing operational parameters such as the length of space missions, crew selection for age and sex, or applying mitigation measures such as radiation shielding or use of biological countermeasures can be used to reduce risk, but these procedures have inherent limitations and are clouded by uncertainties. Space radiation is comprised of high energy protons, neutrons and high charge (Z) and energy (E) nuclei (HZE). The ionization patterns and resulting biological insults of these particles in molecules, cells, and tissues are distinct from typical terrestrial radiation, which is largely X-rays and gamma-rays, and generally characterized as low linear energy transfer (LET) radiation. Galactic cosmic rays (GCR) are comprised mostly of highly energetic protons with a small component of high charge and energy (HZE) nuclei. Prominent HZE nuclei include He, C, O, Ne, Mg, Si, and Fe. GCR ions have median energies near 1 GeV/n, and energies as high as 10 GeV/n make important contributions to the total exposure. Ionizing radiation is a well known carcinogen on Earth (BEIR 2006). The risks of cancer from X-rays and gamma-rays have been established at doses above 50 mSv (5 rem), although there are important uncertainties and on-going scientific debate about cancer risk at lower doses and at low dose rates (<50 mSv/h). The relationship between the early biological effects of HZE nuclei and the probability of cancer in humans is poorly understood, and it is this missing knowledge that leads to significant uncertainties in projecting cancer risks during space exploration (Cucinotta and Durante 2006; Durante and Cucinotta 2008)

    NASA Human Research Program Space Radiation Program Element

    Get PDF
    The goal of the NASA Human Research Program's Space Radiation Program Element is to ensure that crews can safely live and work in the space radiation environment. Current work is focused on developing the knowledge base and tools required for accurate assessment of health risks resulting from space radiation exposure including cancer and circulatory and central nervous system diseases, as well as acute risks from solar particle events. Division of Space Life Sciences (DSLS) Space Radiation Team scientists work at multiple levels to advance this goal, with major projects in biological risk research; epidemiology; and physical, biophysical, and biological modeling
    corecore