438 research outputs found
AE, D ST and their SuperMAG Counterparts : the effect of improved spatial resolution in geomagnetic indices
For decades, geomagnetic indices have been used extensively to parameterize space weather events, as input to various models and as space weather specifications. The auroral electrojet (AE) index and disturbance storm time index (DST) are two such indices that span multiple solar cycles and have been widely studied. The production of improved spatial coverage analogs to AE and DST is now possible using the SuperMAG collaboration of groundâbased magnetometers. SME is an electrojet index that shares methodology with AE. SMR is a ring current index that shares methodology with DST. As the number of magnetometer stations in the SuperMAG network increases over time, so does the spatial resolution of SME and SMR. Our statistical comparison between the established indices and their new SuperMAG counterparts finds that, for large excursions in geomagnetic activity, AE systematically underestimates SME for later cycles. The difference between distributions of recorded AE and SME values for a single solar maximum can be of the same order as changes in activity seen from one solar cycle to the next. We demonstrate that DST and SMR track each other but are subject to an approximate linear shift as a result of the procedure used to map stations to the magnetic equator. We explain the observed differences between AE and SME with the assistance of a simple model, based on the construction methodology of the electrojet indices. We show that in the case of AE and SME, it is not possible to simply translate between the two indices
CHARACTERISTICS OF MASTER'S PROGRAMS IN AGRIBUSINESS MANAGEMENT
This study describes and compares agribusiness masterĂâs programs in North America. These programs include the master of business administration (MBA) and master in (or ĂâofĂâ) agribusiness (MAB) degrees. Accredited MBA programs with an agribusiness emphasis are required to have a clear required core of courses in finance, management, marketing management, and human behavior. Additional required courses in policy, agricultural marketing, production or managerial economics, and quantitative methods are also frequently required. MAB programs have more diversity regarding the four core subjects with a greater percentage of the courses taught within departments of agricultural economics. Evaluation of agribusiness masterĂâs programs in agricultural economics departments is difficult without any formal evaluation criteria.Agribusiness, Teaching/Communication/Extension/Profession,
Characterising the ionospheric current pattern response to southward and northward IMF turnings with dynamical SuperMAG correlation networks
We characterize the response of the quiet time (no substorms or storms) large-scale ionospheric transient equivalent currents to north-south and south-north IMF turnings by using a dynamical network of ground-based magnetometers. Canonical correlation between all pairs of SuperMAG magnetometer stations in the Northern Hemisphere (magnetic latitude (MLAT) 50â82°) is used to establish the extent of near-simultaneous magnetic response between regions of magnetic local time-MLAT. Parameters and maps that describe spatial-temporal correlation are used to characterize the system and its response to the turnings aggregated over several hundred events. We find that regions that experience large increases in correlation post turning coincide with typical locations of a two-cell convection system and are influenced by the interplanetary magnetic field By. The time between the turnings reaching the magnetopause and a network response is found to be âŒ8â10 min and correlation in the dayside occurs 2â8 min before that in the nightside
Alcohol advertising during televised Australian Football finals
Alcohol marketing during sport, and alcohol industry sponsorship of sporting events, is highly lucrative; however, concerns have been raised over the impact on child and adolescent viewers of repeated exposure to alcohol marketing messages. The aim of this research project was to investigate the amount and type of alcohol marketing during two major sporting events in 2012 - the semi-finals and grand final of the AFL and NRL. The broadcasts of these six games were audited for alcohol advertisements and other advertising communications. Almost one-fifth of the screen time included alcohol marketing. Policy and practice implications of these findings are discussed
Limits to the quantification of local climate change
We demonstrate how the fundamental timescales of anthropogenic climate change limit the identification of societally relevant aspects of changes in precipitation. We show that it is nevertheless possible to extract, solely from observations, some confident quantified assessments of change at certain thresholds and locations. Maps of such changes, for a variety of hydrologically-relevant, threshold-dependent metrics, are presented. In places in Scotland, for instance, the total precipitation on heavy rainfall days in winter has increased by more than 50%, but only in some locations has this been accompanied by a substantial increase in total seasonal precipitation; an important distinction for water and land management. These results are important for the presentation of scientific data by climate services, as a benchmark requirement for models which are used to provide projections on local scales, and for process-based climate and impacts research to understand local modulation of synoptic and global scale climate. They are a critical foundation for adaptation planning and for the scientific provision of locally relevant information about future climate
Recommended from our members
Response to âLimitations in the Hilbert Transform Approach to Locating Solar Cycle Terminatorsâ by R. Booth
Booth (Solar Phys.296, 108, 2021; hereafter B21) is essentially a critique of the Hilbert transform techniques used in our paper (Leamon et al., Solar Phys.295, 36, 2020; hereafter L20) to predict the termination of solar cycles. Here we respond to his arguments; our methodology and parameter choices do extract a mathematically robust signature of terminators from the historical sunspot record. We agree that the attempt in L20 to extrapolate beyond the sunspot record gives a failed prediction for the next terminator of May 2020, and we identify both a possible cause and remedy here. However, we disagree with the B21 assessment that the likely termination of Solar Cycle 24 is two years after the date predicted in L20, and we show why
Interpretating observations of ion cyclotron emission from Large Helical Device plasmas with beam-injected ion populations
Ion cyclotron emission (ICE) is detected from all large toroidal magnetically confined fusion (MCF) plasmas. It is a form of spontaneous suprathermal radiation, whose spectral peak frequencies correspond to sequential cyclotron harmonics of energetic ion species, evaluated at the emission location. We first present an account of the worldwide experimental ICE database, highlighting the phenomenological importance of the value of the ratio of energetic ion velocity v<sub>energetic</sub> to the local Alfvén speed V<sub>A</sub>. We then focus on ICE measurements from heliotron-stellarator hydrogen plasmas, heated by energetic proton neutral beam injection (NBI) in the Large Helical Device, for which v<sub>energetic</sub>/V<sub>A</sub> takes values both larger (super-Alfvénic) and smaller (sub-Alfvénic) than unity. The collective relaxation of the NBI proton population, together with the thermal plasma, is studied using a particle-in-cell (PIC) code. This evolves the Maxwell-Lorentz system of equations for hundreds of millions of kinetic gyro-orbit-resolved ions and fluid electrons, self-consistently with the electric and magnetic fields. For LHD-relevant parameter sets, the spatiotemporal Fourier transforms of the fields yield, in the nonlinear saturated regime, good computational proxies for the observed ICE spectra in both the super-and sub-Alfvénic regimes for NBI protons. At early times in the PIC treatment, the computed growth rates correspond to analytical linear growth rates of the magnetoacoustic cyclotron instability (MCI), which was previously identified to underly ICE from tokamak plasmas. The spatially localised PIC treatment does not include toroidal effects or geometry. Its success in simulating ICE spectra from tokamak and, here, heliotron-stellarator plasmas suggests that the plasma parameters and ion energetic distribution at the emission location suffice to determine the ICE phenomenology. The capability to span the super-Alfvénic and sub-Alfvénic energetic ion regimes is a generic challenge in interpreting MCF plasma physics, and it is encouraging that this first principles computational treatment of ICE has now achieved this
Overlapping Magnetic Activity Cycles and the Sunspot Number: Forecasting Sunspot Cycle 25 Amplitude
The Sun exhibits a well-observed modulation in the number of spots on its disk over a period of about 11 years. From the dawn of modern observational astronomy, sunspots have presented a challenge to understandingâtheir quasi-periodic variation in number, first noted 175 years ago, has stimulated community-wide interest to this day. A large number of techniques are able to explain the temporal landmarks, (geometric) shape, and amplitude of sunspot âcycles,â however, forecasting these features accurately in advance remains elusive. Recent observationally-motivated studies have illustrated a relationship between the Sunâs 22-year (Hale) magnetic cycle and the production of the sunspot cycle landmarks and patterns, but not the amplitude of the sunspot cycle. Using (discrete) Hilbert transforms on more than 270 years of (monthly) sunspot numbers we robustly identify the so-called âterminationâ events that mark the end of the previous 11-yr sunspot cycle, the enhancement/acceleration of the present cycle, and the end of 22-yr magnetic activity cycles. Using these we extract a relationship between the temporal spacing of terminators and the magnitude of sunspot cycles. Given this relationship and our prediction of a terminator event in 2020, we deduce that sunspot Solar Cycle 25 could have a magnitude that rivals the top few since records began. This outcome would be in stark contrast to the community consensus estimate of sunspot Solar Cycle 25 magnitude
Newcomb-Benford Law as a generic flag for changes in the derivation of long-term solar terrestrial physics timeseries
The Newcomb-Benford Law (NBL) prescribes the probability distribution of the first digit of variables which explore a broad range under conditions including aggregation. Long-term space weather relevant observations and indices necessarily incorporate changes in the contributing number and types of observing instrumentation over time and we find that this can be detected solely by comparison with the NBL. It detects when upstream solar wind magnetic field OMNI High Resolution (HRO) Interplanetary Magnetic Field incorporated new data from the WIND and Advanced Composition Explorer (ACE) spacecraft after 1995. NBL comparison can detect underlying changes in the geomagnetic Auroral Electrojet (AE) index (activity dependent background subtraction) and the SuperMAG Electrojet (SME) index (different station types) that select individual stations showing the largest deflection, but not where station data are averaged, as in the SuperMAG Ring Current (SMR) index. As composite indices become more widespread across the geosciences, the NBL may provide a generic, data processing independent flag indicating changes in the constituent raw data, calibration or sampling method
- âŠ