394 research outputs found

    Quantitative Predictive Modelling Approaches to Understanding Rheumatoid Arthritis:A Brief Review

    Get PDF
    Rheumatoid arthritis is a chronic autoimmune disease that is a major public health challenge. The disease is characterised by inflammation of synovial joints and cartilage erosion, which lead to chronic pain, poor life quality and, in some cases, mortality. Understanding the biological mechanisms behind the progression of the disease, as well as developing new methods for quantitative predictions of disease progression in the presence/absence of various therapies is important for the success of therapeutic approaches. The aim of this study is to review various quantitative predictive modelling approaches for understanding rheumatoid arthritis. To this end, we start by briefly discussing the biology of this disease and some current treatment approaches, as well as emphasising some of the open problems in the field. Then, we review various mathematical mechanistic models derived to address some of these open problems. We discuss models that investigate the biological mechanisms behind the progression of the disease, as well as pharmacokinetic and pharmacodynamic models for various drug therapies. Furthermore, we highlight models aimed at optimising the costs of the treatments while taking into consideration the evolution of the disease and potential complications.Publisher PDFPeer reviewe

    The effect of interstitial pressure on therapeutic agent transport : coupling with the tumor blood and lymphatic vascular systems

    Get PDF
    Vascularized tumor growth is characterized by both abnormal interstitial fluid flow and the associated interstitial fluid pressure (IFP). Here, we study the effect that these conditions have on the transport of therapeutic agents during chemotherapy. We apply our recently developed vascular tumor growth model which couples a continuous growth component with a discrete angiogenesis model to show that hypertensive IFP is a physical barrier that may hinder vascular extravasation of agents through transvascular fluid flux convection, which drives the agents away from the tumor. This result is consistent with previous work using simpler models without blood flow or lymphatic drainage. We consider the vascular/interstitial/lymphatic fluid dynamics to show that tumors with larger lymphatic resistance increase the agent concentration more rapidly while also experiencing faster washout. In contrast, tumors with smaller lymphatic resistance accumulate less agents but are able to retain them for a longer time. The agent availability (area-under-the curve, or AUC) increases for less permeable agents as lymphatic resistance increases, and correspondingly decreases for more permeable agents. We also investigate the effect of vascular pathologies on agent transport. We show that elevated vascular hydraulic conductivity contributes to the highest AUC when the agent is less permeable, but to lower AUC when the agent is more permeable. We find that elevated interstitial hydraulic conductivity contributes to low AUC in general regardless of the transvascular agent transport capability. We also couple the agent transport with the tumor dynamics to simulate chemotherapy with the same vascularized tumor under different vascular pathologies. We show that tumors with an elevated interstitial hydraulic conductivity alone require the strongest dosage to shrink. We further show that tumors with elevated vascular hydraulic conductivity are more hypoxic during therapy and that the response slows down as the tumor shrinks due to the heterogeneity and low concentration of agents in the tumor interior compared with the cases where other pathological effects may combine to flatten the IFP and thus reduce the heterogeneity. We conclude that dual normalizations of the micronevironment ? both the vasculature and the interstitium ? are needed to maximize the effects of chemotherapy, while normalization of only one of these may be insufficient to overcome the physical resistance and may thus lead to sub-optimal outcomes.PostprintPeer reviewe

    Characterization of Turing diffusion-driven instability on evolving domains

    Get PDF
    In this paper we establish a general theoretical framework for Turing diffusion-driven instability for reaction-diffusion systems on time-dependent evolving domains. The main result is that Turing diffusion-driven instability for reaction-diffusion systems on evolving domains is characterised by Lyapunov exponents of the evolution family associated with the linearised system (obtained by linearising the original system along a spatially independent solution). This framework allows for the inclusion of the analysis of the long-time behavior of the solutions of reaction-diffusion systems. Applications to two special types of evolving domains are considered: (i) time-dependent domains which evolve to a final limiting fixed domain and (ii) time-dependent domains which are eventually time periodic. Reaction-diffusion systems have been widely proposed as plausible mechanisms for pattern formation in morphogenesis

    Secondary school pupils' preferences for different types of structured grouping practices

    Get PDF
    The aim of this paper is to explore pupils’ preferences for particular types of grouping practices an area neglected in earlier research focusing on the personal and social outcomes of ability grouping. The sample comprised over 5,000 year 9 pupils (aged 13-14 years) in 45 mixed secondary comprehensive schools in England. The schools represented three levels of ability grouping in the lower school (years 7 to 9). Pupils responded to a questionnaire which explored the types of grouping that they preferred and the reasons for their choices. The majority of pupils preferred setting, although this was mediated by their set placement, type of school, socio-economic status and gender. The key reason given for this preference was that it enabled work to be matched to learning needs. The paper considers whether there are other ways of achieving this avoiding the negative social and personal outcomes of setting for some pupils

    Spatio-temporal Models of Lymphangiogenesis in Wound Healing

    Full text link
    Several studies suggest that one possible cause of impaired wound healing is failed or insufficient lymphangiogenesis, that is the formation of new lymphatic capillaries. Although many mathematical models have been developed to describe the formation of blood capillaries (angiogenesis), very few have been proposed for the regeneration of the lymphatic network. Lymphangiogenesis is a markedly different process from angiogenesis, occurring at different times and in response to different chemical stimuli. Two main hypotheses have been proposed: 1) lymphatic capillaries sprout from existing interrupted ones at the edge of the wound in analogy to the blood angiogenesis case; 2) lymphatic endothelial cells first pool in the wound region following the lymph flow and then, once sufficiently populated, start to form a network. Here we present two PDE models describing lymphangiogenesis according to these two different hypotheses. Further, we include the effect of advection due to interstitial flow and lymph flow coming from open capillaries. The variables represent different cell densities and growth factor concentrations, and where possible the parameters are estimated from biological data. The models are then solved numerically and the results are compared with the available biological literature.Comment: 29 pages, 9 Figures, 6 Tables (39 figure files in total

    Value-Driven Analysis of New Paradigms in Space Architectures: An Ilities-Based Approach

    Get PDF
    Current commercial, civil, and military space architecture designs perform exquisitely and reliably. However, today’s architecture paradigms are also characterized by expensive launches, large and expensive high-performance spacecraft, long development cycles, and wide variations in ground architectures. While current assets provide high-quality services, and future assets are slated to improve performance within the same design frameworks, proposed future architectures may not be capitalizing on technology improvements, system innovations, or policy alternatives explored during the last two decades. This paper identifies five “trends” along which space architectures may develop, aimed at granting systems several “ilities,” such as resiliency, robustness, flexibility, scalability, and affordability. The trends examined include: commercialization of space, significant reductions in launch costs and the development of hybrid or reusable launch systems, development of on-orbit infrastructure and servicing, aggregation or disaggregation of orbital assets, and the automation and standardization of ground architectures. Further refinement of these key technological and system trends could result in major paradigm shifts in the development and fielding of space operations as well as lead to space architecture designs in the future that are radically different from those today. Within the framework of systems engineering ilities and risk management, this paper reviews current literature surrounding these new change trends and justifies their potential to cause significant paradigm shifts. By examining the work and research conducted so far through an ilities-based approach, systems engineers can more fully appreciate the value being offered by these trends

    A stochastic individual-based model to explore the role of spatial interactions and antigen recognition in the immune response against solid tumours

    Get PDF
    Spatial interactions between cancer and immune cells, as well as the recognition of tumour antigens by cells of the immune system, play a key role in the immune response against solid tumours. The existing mathematical models generally focus only on one of these key aspects. We present here a spatial stochastic individual-based model that explicitly captures antigen expression and recognition. In our model, each cancer cell is characterised by an antigen profile which can change over time due to either epimutations or mutations. The immune response against the cancer cells is initiated by the dendritic cells that recognise the tumour antigens and present them to the cytotoxic T cells. Consequently, T cells become activated against the tumour cells expressing such antigens. Moreover, the differences in movement between inactive and active immune cells are explicitly taken into account by the model. Computational simulations of our model clarify the conditions for the emergence of tumour clearance, dormancy or escape, and allow us to assess the impact of antigenic heterogeneity of cancer cells on the efficacy of immune action. Ultimately, our results highlight the complex interplay between spatial interactions and adaptive mechanisms that underpins the immune response against solid tumours, and suggest how this may be exploited to further develop cancer immunotherapies

    Bridging the gap between individual-based and continuum models of growing cell populations

    Get PDF
    Continuum models for the spatial dynamics of growing cell populations have been widely used to investigate the mechanisms underpinning tissue development and tumour invasion. These models consist of nonlinear partial differential equations that describe the evolution of cellular densities in response to pressure gradients generated by population growth. Little prior work has explored the relation between such continuum models and related single-cell-based models. We present here a simple stochastic individual-based model for the spatial dynamics of multicellular systems whereby cells undergo pressure-driven movement and pressure-dependent proliferation. We show that nonlinear partial differential equations commonly used to model the spatial dynamics of growing cell populations can be formally derived from the branching random walk that underlies our discrete model. Moreover, we carry out a systematic comparison between the individual-based model and its continuum counterparts, both in the case of one single cell population and in the case of multiple cell populations with different biophysical properties. The outcomes of our comparative study demonstrate that the results of computational simulations of the individual-based model faithfully mirror the qualitative and quantitative properties of the solutions to the corresponding nonlinear partial differential equations. Ultimately, these results illustrate how the simple rules governing the dynamics of single cells in our individual-based model can lead to the emergence of complex spatial patterns of population growth observed in continuum models

    Modelling rheumatoid arthritis : a hybrid modelling framework to describe pannus formation in a small joint

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disorder that causes pain, swelling and stiffness in the joints, and negatively impacts the life of affected patients. The disease does not have a cure yet, as there are still many aspects of this complex disorder that are not fully understood. While mathematical models can shed light on some of these aspects, to date there are few such models that can be used to better understand the disease. As a first step in the mechanistic understanding of RA, in this study we introduce a new hybrid mathematical modelling framework that describes pannus formation in a small proximal interphalangeal (PIP) joint. We perform numerical simulations with this new model, to investigate the impact of different levels of immune cells (macrophages and fibroblasts) on the degradation of bone and cartilage. Since many model parameters are unknown and cannot be estimated due to a lack of experiments, we also perform a sensitivity analysis of model outputs to various model parameters (single parameters or combinations of parameters). Finally, we discuss how our model could be applied to investigate current treatments for RA, for example, methotrexate, TNF-inhibitors or tocilizumab, which can impact different model parameters.Publisher PDFPeer reviewe
    corecore