48 research outputs found

    Fabrication of Flexible Piezoelectric PZT/Fabric Composite

    Get PDF
    Flexible piezoelectric PZT/fabric composite material is pliable and tough in nature which is in a lack of traditional PZT patches. It has great application prospect in improving the sensitivity of sensor/actuator made by piezoelectric materials especially when they are used for curved surfaces or complicated conditions. In this paper, glass fiber cloth was adopted as carrier to grow PZT piezoelectric crystal particles by hydrothermal method, and the optimum conditions were studied. The results showed that the soft glass fiber cloth was an ideal kind of carrier. A large number of cubic-shaped PZT nanocrystallines grew firmly in the carrier with a dense and uniform distribution. The best hydrothermal condition was found to be pH 13, reaction time 24 h, and reaction temperature 200°C

    Supporting information for: "Instability and transport of metal catalyst in the growth of tapered silicon nanowires"

    Get PDF
    Nano Letters, 6(9): pp. 1852-1857. http://dx.doi.org/10.1021/nl060533rDuring metal-catalyzed growth of tapered silicon nanowires, or silicon nanocones (SiNCs), Au-Si eutectic particles are seen to undergo significant and reproducible reductions in their diameters. The reductions are accompanied by the transfer of eutectic droplet mass to adjacent, initially metal catalyst-free substrates, producing secondary nucleation and growth of SiNCs. Remarkably, the catalyst particle diameters on the SiNCs grown on the adjacent substrates are strongly correlated with those on the SiNCs grown on the initially Au-nanoparticle-coated substrate. These post-growth nanoparticle sizes depend on temperature and are found to be independent of the initial nanoparticle sizes. Our modeling and analysis indicates that the size reduction and mass transfer could be explained by electrostatic charge-induced dissociation of the droplet. The reduction in size enables the controlled growth of SiNCs with tip sharpnesses approaching the atomic scale, indicating that metal-catalyst nanoparticles can play an even more dynamic role than previously thought, and suggesting additional modes of control of shape, and of nucleation and growth location

    Mid-infrared materials and devices on a Si platform for optical sensing

    Get PDF
    In this article, we review our recent work on mid-infrared (mid-IR) photonic materials and devices fabricated on silicon for on-chip sensing applications. Pedestal waveguides based on silicon are demonstrated as broadband mid-IR sensors. Our low-loss mid-IR directional couplers demonstrated in SiNx waveguides are useful in differential sensing applications. Photonic crystal cavities and microdisk resonators based on chalcogenide glasses for high sensitivity are also demonstrated as effective mid-IR sensors. Polymer-based functionalization layers, to enhance the sensitivity and selectivity of our sensor devices, are also presented. We discuss the design of mid-IR chalcogenide waveguides integrated with polycrystalline PbTe detectors on a monolithic silicon platform for optical sensing, wherein the use of a low-index spacer layer enables the evanescent coupling of mid-IR light from the waveguides to the detector. Finally, we show the successful fabrication processing of our first prototype mid-IR waveguide-integrated detectors

    Band alignment and p-type doping of ZnSnN2

    No full text
    Publisher's PDFComposed of earth-abundant elements, ZnSnN2 is a promising semiconductor for photovoltaic and photoelectrochemical applications. However, basic properties such as the precise value of the band gap and the band alignment to other semiconductors are still unresolved. For instance, reported values for the band gap vary from 1.4 to 2.0 eV. In addition, doping in ZnSnN2 remains largely unexplored. Using density functional theory with the Heyd-Scuseria-Ernzerhof hybrid functional, we investigate the electronic structure of ZnSnN2, its band alignment to GaN and ZnO, and the possibility of p-type doping. We find that the position of the valence-band maximum of ZnSnN2 is 0.39 eV higher than that in GaN, yet the conduction-band minimum is close to that in ZnO, which suggests that achieving p-type conductivity is likely as in GaN, yet it may be difficult to control unintentional n-type conductivity as in ZnO. Among possible p-type dopants, we explore Li, Na, and K substituting on the Zn site. We show that while LiZn is a shallow acceptor, NaZn and KZn are deep acceptors, which we trace back to large local relaxations around the Na and K impurities due to the atomic size mismatches.University of Delaware. Department of Materials Science and Engineering

    Band alignment and p

    No full text

    Demonstration Of Mid-Infrared Waveguide Photonic Crystal Cavities

    No full text
    We have demonstrated what we believe to be the first waveguide photonic crystal cavity operating in the midinfrared. The devices were fabricated from Ge23Sb7S70 chalcogenide glass (ChG) on CaF 2 substrates by combing photolithographic patterning and focused ion beam milling. The waveguide-coupled cavities were characterized using a fiber end fire coupling method at 5.2 μm wavelength, and a loaded quality factor of ̃2000 was measured near the critical coupling regime. © 2013 Optical Society of America

    Planar Chalcogenide Glass Mid-Infrared Photonics

    No full text
    Chalcogenide glasses, namely the amorphous compounds containing sulfur, selenium, and/or tellurium, have emerged as a promising material candidate for mid-infrared integrated photonics given their wide optical transparency window, high linear and nonlinear indices, as well as their capacity for monolithic integration on a wide array of substrates. Exploiting these unique features of the material, we demonstrated high-index-contrast, waveguide-coupled As 2Se3 chalcogenide glass resonators monolithically integrated on silicon with a high intrinsic quality factor of 2 × 10 5 at 5.2 micron wavelength, and what we believe to be the first waveguide photonic crystal cavity operating in the mid-infrared. © 2014 SPIE

    Supporting information for: "Diamond-hexagonal semiconductor nanocones with controllable apex angle"

    No full text
    Journal Of The American Chemical Society, 127(40): pp. 13782-13783. http://dx.doi.org/10.1021/ja0544814We report on the synthesis of nanostructured and crystalline tapered Si and Ge polyhedra via metal-catalyzed chemical vapor deposition. These Si and Ge nanocones (SiNCs, GeNCs) possess tips with near-atomic sharpness, micron-scaled bases, hexagonal cross-sections, and controllable apex angles. High-resolution transmission electron microscopy, selected-area electron diffraction and Raman scattering spectroscopy and analysis indicate that the SiNCs are of the diamond-hexagonal Si(IV) phase
    corecore