81 research outputs found
The KATRIN Pre-Spectrometer at reduced Filter Energy
The KArlsruhe TRItium Neutrino experiment, KATRIN, will determine the mass of
the electron neutrino with a sensitivity of 0.2 eV (90% C.L.) via a measurement
of the beta-spectrum of gaseous tritium near its endpoint of E_0 =18.57 keV. An
ultra-low background of about b = 10 mHz is among the requirements to reach
this sensitivity. In the KATRIN main beam-line two spectrometers of MAC-E
filter type are used in a tandem configuration. This setup, however, produces a
Penning trap which could lead to increased background. We have performed test
measurements showing that the filter energy of the pre-spectrometer can be
reduced by several keV in order to diminish this trap. These measurements were
analyzed with the help of a complex computer simulation, modeling multiple
electron reflections both from the detector and the photoelectric electron
source used in our test setup.Comment: 22 pages, 12 figure
A phase I dose-finding and pharmacokinetic study of subcutaneous semisynthetic homoharringtonine (ssHHT) in patients with advanced acute myeloid leukaemia
To determine the maximum-tolerated dose (MTD), dose-limiting toxicities and pharmacokinetic of semisynthetic homoharringtonine (ssHHT), given as a twice daily subcutaneous (s.c.) injections for 9 days, in patients with advanced acute leukaemia, 18 patients with advanced acute myeloid leukaemia were included in this sequential Bayesian phase I dose-finding trial. A starting dose of 0.5 mg m−2 day−1 was explored with subsequent dose escalations of 1, 3, 5 and 6 mg m−2 day−1. Myelosuppression was constant. The MTD was estimated as the dose level of 5 mg m−2 day−1 for 9 consecutive days by s.c. route. Dose-limiting toxicities were hyperglycaemia with hyperosmolar coma at 3 mg m−2, and (i) one anasarque and haematemesis, (ii) one life-threatening pulmonary aspergillosis, (iii) one skin rash and (iv) one scalp pain at dose level of 5 mg m−2 day−1. The mean half-life of ssHHT was 11.01±3.4 h, the volume of distribution at steady state was 2±1.4 l kg−1 and the plasma clearance was 11.6±10.4 l h−1. Eleven of the 12 patients with circulating leukaemic cells had blood blast clearance, two achieved complete remission and one with blast crisis of CMML returned in chronic phase. The recommended daily dose of ssHHT on the 9-day schedule is 5 mg m−2 day−1
Dead layer on silicon p–i–n diode charged-particle detectors
Semiconductor detectors in general have a dead layer at their surfaces that is either a result of natural or induced passivation, or is formed during the process of making a contact. Charged particles passing through this region produce ionization that is incompletely collected and recorded, which leads to departures from the ideal in both energy deposition and resolution. The silicon p-i-n diode used in the KATRIN neutrinomass experiment has such a dead layer. We have constructed a detailed Monte Carlo model for the passage of electrons from vacuum into a silicon detector, and compared the measured energy spectra to the predicted ones for a range of energies from 12 to 20 keV. The comparison provides experimental evidence that a substantial fraction of the ionization produced in the "dead" layer evidently escapes by diffusion, with 46% being collected in the depletion zone and the balance being neutralized at the contact or by bulk recombination. The most elementary model of a thinner dead layer from which no charge is collected is strongly disfavored
The design, construction, and commissioning of the KATRIN experiment
The KArlsruhe TRItium Neutrino (KATRIN) experiment, which aims to make a direct and model-independent determination of the absolute neutrino mass scale, is a complex experiment with many components. More than 15 years ago, we published a technical design report (TDR) [1] to describe the hardware design and requirements to achieve our sensitivity goal of 0.2 eV at 90% C.L. on the neutrino mass. Since then there has been considerable progress, culminating in the publication of first neutrino mass results with the entire beamline operating [2]. In this paper, we document the current state of all completed beamline components (as of the first neutrino mass measurement campaign), demonstrate our ability to reliably and stably control them over long times, and present details on their respective commissioning campaigns
Twelve-month observational study of children with cancer in 41 countries during the COVID-19 pandemic
Introduction Childhood cancer is a leading cause of death. It is unclear whether the COVID-19 pandemic has impacted childhood cancer mortality. In this study, we aimed to establish all-cause mortality rates for childhood cancers during the COVID-19 pandemic and determine the factors associated with mortality. Methods Prospective cohort study in 109 institutions in 41 countries. Inclusion criteria: children <18 years who were newly diagnosed with or undergoing active treatment for acute lymphoblastic leukaemia, non-Hodgkin's lymphoma, Hodgkin lymphoma, retinoblastoma, Wilms tumour, glioma, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, medulloblastoma and neuroblastoma. Of 2327 cases, 2118 patients were included in the study. The primary outcome measure was all-cause mortality at 30 days, 90 days and 12 months. Results All-cause mortality was 3.4% (n=71/2084) at 30-day follow-up, 5.7% (n=113/1969) at 90-day follow-up and 13.0% (n=206/1581) at 12-month follow-up. The median time from diagnosis to multidisciplinary team (MDT) plan was longest in low-income countries (7 days, IQR 3-11). Multivariable analysis revealed several factors associated with 12-month mortality, including low-income (OR 6.99 (95% CI 2.49 to 19.68); p<0.001), lower middle income (OR 3.32 (95% CI 1.96 to 5.61); p<0.001) and upper middle income (OR 3.49 (95% CI 2.02 to 6.03); p<0.001) country status and chemotherapy (OR 0.55 (95% CI 0.36 to 0.86); p=0.008) and immunotherapy (OR 0.27 (95% CI 0.08 to 0.91); p=0.035) within 30 days from MDT plan. Multivariable analysis revealed laboratory-confirmed SARS-CoV-2 infection (OR 5.33 (95% CI 1.19 to 23.84); p=0.029) was associated with 30-day mortality. Conclusions Children with cancer are more likely to die within 30 days if infected with SARS-CoV-2. However, timely treatment reduced odds of death. This report provides crucial information to balance the benefits of providing anticancer therapy against the risks of SARS-CoV-2 infection in children with cancer
Focal-plane detector system for the KATRIN experiment
The focal-plane detector system for the KArlsruhe TRItium Neutrino (KATRIN)
experiment consists of a multi-pixel silicon p-i-n-diode array, custom readout
electronics, two superconducting solenoid magnets, an ultra high-vacuum system,
a high-vacuum system, calibration and monitoring devices, a scintillating veto,
and a custom data-acquisition system. It is designed to detect the low-energy
electrons selected by the KATRIN main spectrometer. We describe the system and
summarize its performance after its final installation.Comment: 28 pages. Two figures revised for clarity. Final version published in
Nucl. Inst. Meth.
- …