123 research outputs found

    Resveratrol protects against sepsis induced acute kidney injury in mice by inducing Klotho mediated apoptosis inhibition

    Get PDF
    Purpose: To investigate the mechanism of resveratrol protection against sepsis-induced acute kidney injury in mice. Methods: A sepsis-induced acute kidney injury model was established in mice by cecal ligation and puncture (CLP). Sixty healthy male ICR mice were randomly divided into the sham operation (sham) group, sepsis-induced acute kidney injury model (CLP) group, CLP + low-dose (20 mg/kg) resveratrol treatment (CLP + ResL) group, CLP + high-dose (40 mg/kg) resveratrol treatment (CLP + ResH) group and CLP + Klotho (0.01 mg/kg) treatment (CLP + Klotho) group. All mice were administered treatment on the day after surgery and once every 24 h for 3 days. Various serum biochemical parameters and protein expressions were evaluated. Results: After CLP, the levels of serum creatinine (Scr) and blood urea nitrogen (BUN) increased and the pathology was exacerbated. The protein and mRNA expression levels of Klotho and Bcl-2 decreased, while those of Bax and Caspase-3 increased (p < 0.05). After resveratrol and Klotho protein intervention, Scr and BUN levels recovered, and pathological changes were alleviated. The protein and mRNA expression levels of Klotho and Bcl-2 increased, while those of Bax and Caspase-3 decreased. The conditions of the mice in CLP + ResH group and the CLP + Klotho group improved more significantly than those of the mice in the CLP + ResL group (p < 0.05). Conclusion: Resveratrol upregulates the expression of endogenous Klotho to exert its antiapoptotic effects, which can protect the kidneys of mice against sepsis-induced acute kidney injury. Thus, the compound has potentials for development for protection against acute kidney injury

    A Survey on Federated Learning Poisoning Attacks and Defenses

    Full text link
    As one kind of distributed machine learning technique, federated learning enables multiple clients to build a model across decentralized data collaboratively without explicitly aggregating the data. Due to its ability to break data silos, federated learning has received increasing attention in many fields, including finance, healthcare, and education. However, the invisibility of clients' training data and the local training process result in some security issues. Recently, many works have been proposed to research the security attacks and defenses in federated learning, but there has been no special survey on poisoning attacks on federated learning and the corresponding defenses. In this paper, we investigate the most advanced schemes of federated learning poisoning attacks and defenses and point out the future directions in these areas

    LT4REC:A Lottery Ticket Hypothesis Based Multi-task Practice for Video Recommendation System

    Full text link
    Click-through rate prediction (CTR) and post-click conversion rate prediction (CVR) play key roles across all industrial ranking systems, such as recommendation systems, online advertising, and search engines. Different from the extensive research on CTR, there is much less research on CVR estimation, whose main challenge is extreme data sparsity with one or two orders of magnitude reduction in the number of samples than CTR. People try to solve this problem with the paradigm of multi-task learning with the sufficient samples of CTR, but the typical hard sharing method can't effectively solve this problem, because it is difficult to analyze which parts of network components can be shared and which parts are in conflict, i.e., there is a large inaccuracy with artificially designed neurons sharing. In this paper, we model CVR in a brand-new method by adopting the lottery-ticket-hypothesis-based sparse sharing multi-task learning, which can automatically and flexibly learn which neuron weights to be shared without artificial experience. Experiments on the dataset gathered from traffic logs of Tencent video's recommendation system demonstrate that sparse sharing in the CVR model significantly outperforms competitive methods. Due to the nature of weight sparsity in sparse sharing, it can also significantly reduce computational complexity and memory usage which are very important in the industrial recommendation system.Comment: 6 pages,4 figure

    Epiphytic microbiota source stimulates the fermentation profile and bacterial community of alfalfa-corn mixed silage

    Get PDF
    The epiphytic microbiota source on plants plays a crucial role in the production of high-quality silage. To gain a better understanding of its contribution, the microbiota of alfalfa (M1C0), corn (M0C1) and the resulting mixture (M1C1) was applied in alfalfa-corn mixed silage production system. M1C0 decreased ammonia-N levels in terms of total nitrogen (57.59–118.23 g/kg TN) and pH (3.59–4.40) values (p < 0.01), which increased lactic acid (33.73–61.89 g/kg DM) content (p < 0.01). Consequently, this resulted in higher residual water-soluble carbohydrate (29.13–41.76 g/kg DM) and crude protein (152.54–167.91 g/kg DM) contents, as well as lower NDF (427.27 g/kg DM) and ADF (269.53 g/kg DM) contents in the silage compared to M1C1- and M0C1-treated samples. Moreover, M1C0 silage showed significantly higher bacterial alpha diversity indices (p < 0.05), including the number of observed species and Chao1 and Shannon diversity indices, at the later stages of ensiling. Lactobacillus, Kosakonia and Enterobacter were the dominant bacterial species in silages, with a relative abundance of >80%. However, the abundance of Lactobacillus amylovorus in M0C1- and M1C1-treated silage increased (p < 0.01) in the late stages of ensiling. These findings confirmed that the epiphytic microbiota source exerts competitive effects during anaerobic storage of alfalfa-corn mixed silage

    Whole-genome microRNA sequencing analysis in patients with pulmonary hypertension

    Get PDF
    Pulmonary hypertension (PH) is a pathological disorder with multiple clinical manifestations that lead to cardiovascular and respiratory diseases in most patients. Recent studies have revealed that microRNAs (miRNAs) play important roles as upstream signaling molecules in several diseases, including PH. However, miRNAs that can be used as diagnostic or prognostic biomarkers for PH have not been identified. Thus, in this study, peripheral blood samples obtained from patients with PH and healthy individuals were subjected to genome-wide miRNA sequencing and transcriptome analysis. We screened 136 differentially expressed miRNAs in patients with PH and verified that four differentially expressed miRNAs, namely, hsa-miR-1304-3p, hsa-miR-490-3p, hsa-miR-11400, and hsa-miR-31-5p, could be used as clinical diagnostic biomarkers for pulmonary arterial hypertension. Our findings provide a basis for further in-depth investigations of the specific mechanisms of miRNAs in PH

    Modeling and Optimizing of Producing Recycled PET from Fabrics Waste via Falling Film-Rotating Disk Combined Reactor

    Get PDF
    Recycling and reusing of poly (ethylene terephthalate) (PET) fabrics waste are essential for reducing serious waste of resources and environmental pollution caused by low utilization rate. The liquid-phase polymerization method has advantages of short process flow, low energy consumption, and low production cost. However, unlike prepolymer, the material characteristics of PET fabrics waste (complex composition, high intrinsic viscosity, and large quality fluctuations) make its recycling a technique challenge. In this study, the falling film-rotating disk combined reactor is proposed, and the continuous liquid-phase polymerization is modeled by optimizing and correcting existing models for the final stage of PET polymerization to improve the product quality in plant production. Through modeling and simulation, the weight analysis of indexes closely related to the product quality (intrinsic viscosity, carboxyl end group concentration, and diethylene glycol content) was investigated to optimize the production process in order to obtain the desired polymer properties and meet specific product material characteristics. The model could be applied to other PET wastes (e.g., bottles and films) and extended to investigate different aspects of the recycling process

    The Pinx1 Gene Downregulates Telomerase and Inhibits Proliferation of CD133+ Cancer Stem Cells Isolated from a Nasopharyngeal Carcinoma Cell Line by Regulating Trfs and Mad1/C-Myc/p53 Pathways

    Get PDF
    Background/Aims: Cancer stem cells (CSCs) are important factors for the continuous growth, recurrence, and metastasis of malignant tumors. They are responsible for the ineffectiveness of traditional radiotherapy and chemotherapy toward malignant tumors. Currently, stem cells or side-population cells have been isolated from many cancer cell lines and malignant tumor tissues, including nasopharyngeal carcinoma. Exploring the biological characteristics of CSCs for CSC-targeted therapy has gained importance. CSCs possess higher telomerase activity; thus, the use of the gene encoding telomerase inhibitor PinX1 gene to target telomerase in CSCs and inhibit proliferation, invasion, and metastasis of CSCs has become an important means for the treatment of malignant tumors. PinX1 may regulate complex pathways, including TRF1, Mad1/c-Myc, and p53. Methods: In this study, nasopharyngeal CD133+ CSCs were sorted using CD133 immunomagnetic beads by flow cytometry The successful isolation of CD133+ CSCs was confirmed by examining their surface markers, namely CD44, NaNOG, and SOX2 as well as their ability to undergo in vivo tumorigenesis and in vitro sphere formation, proliferation, migration, and invasion. In addition, CD133+ CSCs were transfected with the constructed PinX1 overexpression plasmid or siRNA and the resulting effects on their proliferation, migration, invasion, and apoptosis were detected using cell counting kit-8 (CCK-8), transwell assay, and scratch test, respectively. Furthermore, their effects on mRNA and protein levels of TRF1, TRF2, Mad1, c-Myc, and p53 were examined using quantitative real-time PCR and western blot, respectively. Results: The overexpression of PinX1 in CD133+ CSCs significantly decreased hTERT (P < 0.001), inhibited proliferation, migration, and invasion, induced apoptosis, and significantly decreased c-Myc mRNA levels (P < 0.001), while it increased TRF1, Mad1, and p53 mRNA levels (all P < 0.001). On the other hand, PinX1 silencing in CD133+ CSCs significantly decreased TRF1, Mad1, and p53 mRNA levels (all P < 0.01), while it increased hTERT and c-Myc mRNA levels (all P < 0.05). Conclusion: These results indicate that PinX1 downregulates telomerase activity in CD133+ CSCs, inhibits its proliferation, migration, and invasion, and induces apoptosis possibly through TRF1, Mad1/c-Myc, and p53–mediated pathways

    B Cell-Related Circulating MicroRNAs With the Potential Value of Biomarkers in the Differential Diagnosis, and Distinguishment Between the Disease Activity and Lupus Nephritis for Systemic Lupus Erythematosus

    Get PDF
    Our understanding of circulating microRNAs (miRNAs) related to systemic lupus erythematosus (SLE) remains very limited. In this study, we screened SLE-specific miRNAs in plasma from 42 B cell-related miRNAs by using miRNA PCR Array. The selected miRNAs were first confirmed in plasma samples from 50 SLE patients, 16 rheumatoid arthritis (RA) patients, and 20 healthy donors using qRT-PCR. We then investigated the relationship between expressions of the selected miRNAs and SLE clinical indicators. As a result, 14 miRNAs (miR-103, miR-150, miR-20a, miR-223, miR-27a, miR-15b, miR-16, miR-181a, miR-19b, miR-22, miR-23a, miR-25, miR-92a, and miR-93) were significantly decreased in the plasma of SLE patients compared with healthy controls (P < 0.05) and could act as the diagnostic signature to distinguish SLE patients from healthy donors. Six miRNAs (miR-92a, miR-27a, miR-19b, miR-23a, miR-223, and miR-16) expressed in plasma were significantly lower in SLE patients than in RA patients (P < 0.05), revealing the potentially diagnostic signature to distinguish SLE patients from RA patients. Furthermore, the downregulated expression of miR-19b, miR-25, miR-93, and miR-15b was associated with SLE disease activity (P < 0.05) while miR-15b and miR-22 expressions were significantly lower in SLE patients with low estimate glomerular filtration rate (eGFR < 60 ml/min/1.73 m2) (P < 0.05). The diagnostic potential of miR-15b for SLE disease activity and lupus nephritis (LN) with low eGFR was validated on an independent validation set with 69 SLE patients and a cross-validation set with 80 SLE patients. In summary, the signature of circulating miRNAs will provide novel biomarkers for the diagnosis of SLE and evaluation of disease activity and LN

    Alcoholism Identification Based on an AlexNet Transfer Learning Model

    Get PDF
    Aim: This paper proposes a novel alcoholism identification approach that can assist radiologists in patient diagnosis.Method: AlexNet was used as the basic transfer learning model. The global learning rate was small, at 10−4, and the iteration epoch number was at 10. The learning rate factor of replaced layers was 10 times larger than that of the transferred layers. We tested five different replacement configurations of transfer learning.Results: The experiment shows that the best performance was achieved by replacing the final fully connected layer. Our method yielded a sensitivity of 97.44%± 1.15%, a specificity of 97.41 ± 1.51%, a precision of 97.34 ± 1.49%, an accuracy of 97.42 ± 0.95%, and an F1 score of 97.37 ± 0.97% on the test set.Conclusion: This method can assist radiologists in their routine alcoholism screening of brain magnetic resonance images
    • …
    corecore