7,885 research outputs found

    A Beehive Haloscope for High-mass Axion Dark Matter

    Full text link
    We propose a new haloscope geometry that can arbitrarily increase the resonator volume for a given target axion mass. This geometry consists of closely packed, overlapping coaxial cavities operating as a single resonator. While the resonant frequency is still determined by the dimensions of the individual "cells," the strong interactions between the cells encourage the entire "beehive" to oscillate in phase, a phenomenon expected of tightly coupled harmonic oscillators. This synchronization behavior allows the construction of a singly connected large-volume resonator at high frequency by simply increasing the number of the cells. Using direct numerical simulations, we verify the existence of a global eigenmode that has a high (40%) form factor in a 169-element beehive resonator. The resonant frequency of the eigenmode is tunable by moving the center rods laterally in unison. The form factor is very tolerant to dimensional deviations and misalignment, as a result of mode hybridization due to strong coupling. The beehive haloscope inherits many appealing properties from the conventional coaxial cavity: a high quality factor, compatibility with a solenoid magnet, ease of fabrication, tuning, and coupling. We argue that this geometry is an excellent candidate for high-mass axion searches covering the post-inflationary parameter space (>5 GHz).Comment: 21 pages, 26 figure

    Pancreatic Tail Cancer with Sole Manifestation of Left Flank Pain: A Very Rare Presentation

    Get PDF
    Pancreatic cancer is sometimes called a “silent disease” because it often causes no symptoms in the early stage. The symptoms can be quite vague and various depending on the location of cancer in the pancreas. The anatomic site distribution is 78% in the head of the pancreas, 11% in the body, and 11% in the tail. Pancreatic cancer is rarely detected in the early stage, and it is very uncommon to diagnose pancreatic tail cancer during an emergency department visit. The manifestation of pancreatic tail cancer as left flank pain is very rare and has seldom been identified in the literature. We present a case of pancreatic tail cancer with the sole manifestation of dull left flank pain. Having negative findings on an ultrasound study initially, this female patient was misdiagnosed as having possible acute gastritis, urolithiasis or muscle strain after she received gastroendoscopy and colonofiberscopy. Her symptoms persisted for several months and she visited our emergency department due to an acute exacerbation of a persistent dull pain in the left flank area. Radiographic evaluation with computed tomography was performed, and pancreatic tail tumor with multiple metastases was found unexpectedly. We review the literature and discuss this rare presentation of pancreatic tail cancer

    Silicon nitride and silica quarter-wave stacks for low-thermal-noise mirror coatings

    Get PDF
    This study investigates a multilayer high reflector with new coating materials for next-generation laser interferometer gravitational wave detectors operated at cryogenic temperatures. We use the plasma-enhanced chemical vapor deposition method to deposit amorphous silicon nitride and silica quarter-wave high-reflector stacks and studied the properties pertinent to the coating thermal noise. Room- and cryogenic-temperature mechanical loss angles of the silicon nitride and silica quarter-wave bilayers are measured using the cantilever ring-down method. We show, for the first time, that the bulk and shear loss angles of the coatings can be obtained from the cantilever ring-down measurement, and we use the bulk and shear losses to calculate the coating thermal noise of silicon nitride and silica high-reflector coatings. The mechanical loss angle of the silicon nitride and silica bilayer is dispersive with a linear weakly positive frequency dependence, and, hence, the coating thermal noise of the high reflectors show a weakly positive frequency dependence in addition to the normal 1/ vf dependence. The coating thermal noise of the silicon nitride and silica high-reflector stack is compared to the lower limit of the coating thermal noise of the end test mirrors of ET-LF, KAGRA, LIGO Voyager, and the directly measured coating thermal noise of the current coatings of Advanced LIGO. The optical absorption of the silicon nitride and silica high reflector at 1550 nm is 45.9 ppm. Using a multimaterial system composed of seven pairs of ion-beam-sputter deposited Ti∶Ta2O5 and silica and nine pairs of silicon nitride and silica on a silicon substrate, the optical absorption can be reduced to 2 ppm, which meets the specification of LIGO Voyager

    Identifying the attack sources of botnets for a renewable energy management system by using a revised locust swarm optimisation scheme

    Get PDF
    Distributed denial of service (DDoS) attacks often use botnets to generate a high volume of packets and adopt controlled zombies for flooding a victim’s network over the Internet. Analysing the multiple sources of DDoS attacks typically involves reconstructing attack paths between the victim and attackers by using Internet protocol traceback (IPTBK) schemes. In general, traditional route-searching algorithms, such as particle swarm optimisation (PSO), have a high convergence speed for IPTBK, but easily fall into the local optima. This paper proposes an IPTBK analysis scheme for multimodal optimisation problems by applying a revised locust swarm optimisation (LSO) algorithm to the reconstructed attack path in order to identify the most probable attack paths. For evaluating the effectiveness of the DDoS control centres, networks with a topology size of 32 and 64 nodes were simulated using the ns-3 tool. The average accuracy of the LS-PSO algorithm reached 97.06 for the effects of dynamic traffic in two experimental networks (number of nodes = 32 and 64). Compared with traditional PSO algorithms, the revised LSO algorithm exhibited a superior searching performance in multimodal optimisation problems and increased the accuracy in traceability analysis for IPTBK problems

    Effects of natto extract on endothelial injury in a rat model

    Get PDF
    Vascular endothelial damage has been found to be associated with thrombus formation, which is considered to be a risk factor for cardiovascular disease. A diet of natto leads to a low prevalence of cardiovascular disease. The aim of the present study was to investigate the effects of natto extract on vascular endothelia damage with exposure to laser irradiation. Endothelial damage both in vitro and in vivo was induced by irradiation of rose bengal using a DPSS green laser. Cell viability was determined by MTS assay, and the intimal thickening was verified by a histological approach. The antioxidant content of natto extract was determined for the free radical scavenging activity. Endothelial cells were injured in the presence of rose bengal irradiated in a dose-dependent manner. Natto extract exhibits high levels of antioxidant activity compared with purified natto kinase. Apoptosis of laser-injured endothelial cells was significantly reduced in the presence of natto extract. Both the natto extract and natto kinase suppressed intimal thickening in rats with endothelial injury. The present findings suggest that natto extract suppresses vessel thickening as a synergic effect attributed to its antioxidant and anti-apoptosis properties

    Role of T Cells in Type 2 Diabetic Nephropathy

    Get PDF
    Type 2 diabetic nephropathy (DN) is the most common cause of end-stage renal disease and is increasingly considered as an inflammatory disease characterized by leukocyte infiltration at every stage of renal involvement. Inflammation and activation of the immune system are closely involved in the pathogenesis of diabetes and its microvascular complications. Macrophage has been well recognized to play an important role in type 2 DN, leukocyte infiltration, and participated in process of DN, as was proposed recently. Th1, Th2, Th17, T reg, and cytotoxic T cells are involved in the development and progression of DN. The purpose of this review is to assemble current information concerning the role of T cells in the development and progression of type 2 DN. Specific emphasis is placed on the potential interaction and contribution of the T cells to renal damage. The therapeutic strategies involving T cells in the treatment of type 2 DN are also reviewed. Improving knowledge of the recognition of T cells as significant pathogenic mediators in DN reinforces the possibility of new potential therapeutic targets translated into future clinical treatments
    corecore