356 research outputs found
Interfacial Properties of Polyethylene Glycol/Vinyltriethoxysilane (PEG/VTES) Copolymers and their Application to Stain Resistance
In this study, polyethylene glycol (PEG) and vinyltriethoxysilane (VTES) were used in different proportions to produce a series of PEG–VTES copolymers. The copolymer molecular structures were confirmed by FTIR spectroscopy. In addition, their surface activities were evaluated by evaluating the surface tension, contact angle, and foaming properties. The results showed that these surfactants exhibited excellent surface activities and wetting power, as well as low foaming. Consequently, the application of a series of PEG/VTES copolymers can make cotton fabrics stain resistant
What role does PDL1 play in EMT changes in tumors and fibrosis?
Epithelial-mesenchymal transformation (EMT) plays a pivotal role in embryonic development, tissue fibrosis, repair, and tumor invasiveness. Emerging studies have highlighted the close association between EMT and immune checkpoint molecules, particularly programmed cell death ligand 1 (PDL1). PDL1 exerts its influence on EMT through bidirectional regulation. EMT-associated factors, such as YB1, enhance PDL1 expression by directly binding to its promoter. Conversely, PDL1 signaling triggers downstream pathways like PI3K/AKT and MAPK, promoting EMT and facilitating cancer cell migration and invasion. Targeting PDL1 holds promise as a therapeutic strategy for EMT-related diseases, including cancer and fibrosis. Indeed, PDL1 inhibitors, such as pembrolizumab and nivolumab, have shown promising results in clinical trials for various cancers. Recent research has also indicated their potential benefit in fibrosis treatment in reducing fibroblast activation and extracellular matrix deposition, thereby addressing fibrosis. In this review, we examine the multifaceted role of PDL1 in immunomodulation, growth, and fibrosis promotion. We discuss the challenges, mechanisms, and clinical observations related to PDL1, including the limitations of the PD1/PDL1 axis in treatment and PD1-independent intrinsic PDL1 signaling. Our study highlights the dynamic changes in PDL1 expression during the EMT process across various tumor types. Through interplay between PDL1 and EMT, we uncover co-directional alterations, regulatory pathways, and diverse changes resulting from PDL1 intervention in oncology. Additionally, our findings emphasize the dual role of PDL1 in promoting fibrosis and modulating immune responses across multiple diseases, with potential implications for therapeutic approaches. We particularly investigate the therapeutic potential of targeting PDL1 in type II EMT fibrosis: strike balance between fibrosis modulation and immune response regulation. This analysis provides valuable insights into the multifaceted functions of PDL1 and contributes to our understanding of its complex mechanisms and therapeutic implications
Association of weight gain and metabolic syndrome in patient taking Clozapine: a 8-year cohort study
Toxicity assessments of chalcone and some synthetic chalcone analogues in a zebrafish model
[[abstract]]The aim of this study was to investigate the in vivo toxicities of some novel synthetic chalcones. Chalcone and four chalcone analogues 1a–d were evaluated using zebrafish embryos following antibody staining to visualize their morphological changes and muscle fiber alignment. Results showed that embryos treated with 3'-hydroxychalcone
(compound 1b) displayed a high percentage of muscle defects (96.6%), especially myofibril misalignment. Ultrastructural analysis revealed that compound 1b-treated embryos displayed many muscle defect phenotypes, including breakage and collapse of myofibrils, reduced cell numbers, and disorganized thick (myosin) and thin (actin) filaments. Taken together, our results provide in vivo evidence of the myotoxic effects of the synthesized chalcone analogues on developing zebrafish embryos.[[incitationindex]]SCI[[booktype]]電子
New prognostic system specific for epidermal growth factor receptor-mutated lung cancer brain metastasis
IntroductionBrain metastases (BM) from lung cancer are heterogeneous, and accurate prognosis is required for effective treatment strategies. This study aimed to identify prognostic factors and develop a prognostic system exclusively for epidermal growth factor receptor (EGFR)-mutated lung cancer BM.MethodsIn total, 173 patients with EGFR-mutated lung cancer from two hospitals who developed BM and received tyrosine kinase inhibitor (TKI) and brain radiation therapy (RT) were included. Univariate and multivariate analyses were performed to identify significant EGFR-mutated BM prognostic factors to construct a new EGFR recursive partitioning analysis (RPA) prognostic index. The predictive discrimination of five prognostic scoring systems including RPA, diagnosis-specific prognostic factors indexes (DS-GPA), basic score for brain metastases (BS-BM), lung cancer using molecular markers (lung-mol GPA) and EGFR-RPA were analyzed using log-rank test, concordance index (C-index), and receiver operating characteristic curve (ROC). The potential predictive factors in the multivariable analysis to construct a prognostic index included Karnofsky performance status, BM at initial lung cancer diagnosis, BM progression after TKI, EGFR mutation type, uncontrolled primary tumors, and number of BM.Results and discussionIn the log-rank test, indices of RPA, DS-GPA, lung-mol GPA, BS-BM, and EGFR-RPA were all significant predictors of overall survival (OS) (p ≤ 0.05). The C-indices of each prognostic score were 0.603, 0.569, 0.613, 0.595, and 0.671, respectively; The area under the curve (AUC) values predicting 1-year OS were 0.565 (p=0.215), 0.572 (p=0.174), 0.641 (p=0.007), 0.585 (p=0.106), and 0.781 (p=0.000), respectively. Furthermore, EGFR-RPA performed better in terms of calibration than other prognostic indices.BM progression after TKI and EGFR mutation type were specific prognostic factors for EGFR-mutated lung cancer BM. EGFR-RPA was more precise than other models, and useful for personal treatment
Design and Fabrication of Single-Walled Carbon Nanonet Flexible Strain Sensors
This study presents a novel flexible strain sensor for real-time strain sensing. The material for strain sensing is single-walled carbon nanonets, grown using the alcohol catalytic chemical vapor deposition method, that were encapsulated between two layers of Parylene-C, with a polyimide layer as the sensing surface. All of the micro-fabrication was compatible with the standard IC process. Experimental results indicated that the gauge factor of the proposed strain sensor was larger than 4.5, approximately 2.0 times greater than those of commercial gauges. The results also demonstrated that the gauge factor is small when the growth time of SWCNNs is lengthier, and the gauge factor is large when the line width of the serpentine pattern of SWCNNs is small
A Search for Double-peaked narrow emission line Galaxies and AGNs in the LAMOST DR1
LAMOST has released more than two million spectra, which provide the
opportunity to search for double-peaked narrow emission line (NEL) galaxies and
AGNs. The double-peaked narrow-line profiles can be well modeled by two
velocity components, respectively blueshifted and redshifted with respect to
the systemic recession velocity. This paper presents 20 double-peaked NEL
galaxies and AGNs found from LAMOST DR1 using a search method based on
multi-gaussian fit of the narrow emission lines. Among them, 10 have already
been published by other authors, either listed as genuine double-peaked NEL
objects or as asymmetric NEL objects, the remaining 10 being first discoveries.
We discuss some possible origins for double-peaked narrow-line features, as
interaction between jet and narrow line regions, interaction with companion
galaxies and black hole binaries. Spatially resolved optical imaging and/or
follow-up observations in other spectral bands are needed to further discuss
the physical mechanisms at work.Comment: 17 pages, 5figures, 4 tables, accepted by RA
Reduced expression of alpha-1,2-mannosidase I extends lifespan in Drosophila melanogaster and Caenorhabditis elegans
Exposure to sub-lethal levels of stress, or hormesis, was a means to induce longevity. By screening for mutations that enhance resistance to multiple stresses, we identified multiple alleles of alpha-1,2-mannosidase I (mas1) which, in addition to promoting stress resistance, also extended longevity. Longevity enhancement is also observed when mas1 expression is reduced via RNA interference in both Drosophila melanogaster and Caenorhabditis elegans. The screen also identified Edem1 (Edm1), a gene downstream of mas1, as a modulator of lifespan. As double mutants for both mas1 and Edm1 showed no additional longevity enhancement, it appeared that both mutations function within a common pathway to extend lifespan. Molecular analysis of these mutants revealed that the expression of BiP, a putative biomarker of dietary restriction (DR), is down-regulated in response to reductions in mas1 expression. These findings suggested that mutations in mas1 may extend longevity by modulating DR
- …