106 research outputs found

    Intellectual disability, unusual facial morphology and hand anomalies in sibs

    Get PDF
    Here we report on a Portuguese family with three sisters who shared moderate intellectual disability, unusual facial morphology (short palpebral fissures; broad nasal tip; thin upper and lower vermillion; broad and pointed chin) and hand anomalies in two of them (short left third and fifth right metacarpals in one case; marked syndactyly between the third and fourth fingers in another). One of the sisters had microcephaly and short stature, and the other two were obese. Obesity and somewhat similar facial features were also present in the otherwise healthy mother. Despite the overlap with several known syndromes (Albright osteodystrophy; Filippi syndrome; Rubinstein-Taybi syndrome; microdeletion 2q37), we suggest this condition is previously unreported, and most likely displays an autosomal recessive pattern of inheritance

    Acute inhibition of MEK suppresses congenital melanocytic nevus syndrome in a murine model driven by activated NRAS and Wnt signaling

    Get PDF
    Congenital melanocytic nevus (CMN) syndrome is the association of pigmented melanocytic nevi with extra-cutaneous features, classically melanotic cells within the central nervous system, most frequently caused by a mutation of NRAS codon 61. This condition is currently untreatable and carries a significant risk of melanoma within the skin, brain, or leptomeninges. We have previously proposed a key role for Wnt signaling in the formation of melanocytic nevi, suggesting that activated Wnt signaling may be synergistic with activated NRAS in the pathogenesis of CMN syndrome. Some familial pre-disposition suggests a germ-line contribution to CMN syndrome, as does variability of neurological phenotypes in individuals with similar cutaneous phenotypes. Accordingly, we performed exome sequencing of germ-line DNA from patients with CMN to reveal rare or undescribed Wnt-signaling alterations. A murine model harboring activated NRASQ61K and Wnt signaling in melanocytes exhibited striking features of CMN syndrome, in particular neurological involvement. In the first model of treatment for this condition, these congenital, and previously assumed permanent, features were profoundly suppressed by acute post-natal treatment with a MEK inhibitor. These data suggest that activated NRAS and aberrant Wnt signaling conspire to drive CMN syndrome. Post-natal MEK inhibition is a potential candidate therapy for patients with this debilitating condition

    Multiple congenital melanocytic nevi and neurocutaneous melanosis are caused by postzygotic mutations in codon 61 of NRAS

    Get PDF
    Congenital melanocytic nevi (CMN) can be associated with neurological abnormalities and an increased risk of melanoma. Mutations in NRAS, BRAF, and Tp53 have been described in individual CMN samples; however, their role in the pathogenesis of multiple CMN within the same subject and development of associated features has not been clear. We hypothesized that a single postzygotic mutation in NRAS could be responsible for multiple CMN in the same individual, as well as for melanocytic and nonmelanocytic central nervous system (CNS) lesions. From 15 patients, 55 samples with multiple CMN were sequenced after site-directed mutagenesis and enzymatic digestion of the wild-type allele. Oncogenic missense mutations in codon 61 of NRAS were found in affected neurological and cutaneous tissues of 12 out of 15 patients, but were absent from unaffected tissues and blood, consistent with NRAS mutation mosaicism. In 10 patients, the mutation was consistently c.181C>A, p.Q61K, and in 2 patients c.182A>G, p.Q61R. All 11 non-melanocytic and melanocytic CNS samples from 5 patients were mutation positive, despite NRAS rarely being reported as mutated in CNS tumors. Loss of heterozygosity was associated with the onset of melanoma in two cases, implying a multistep progression to malignancy. These results suggest that single postzygotic NRAS mutations are responsible for multiple CMN and associated neurological lesions in the majority of cases

    Exome sequencing identifies variants in FKBP4 that are associated with recurrent fetal loss in humans

    Get PDF
    Recurrent pregnancy loss (RPL) is defined as two or more consecutive miscarriages and affects an estimated 1.5% of couples trying to conceive. RPL has been attributed to genetic, endocrine, immune and thrombophilic disorders, But many cases remain unexplained. We investigated a Bangladeshi family where the proband experienced 29 consecutive pregnancy losses with no successful pregnancies from three different marriages. Whole exome sequencing identified rare genetic variants in several candidate genes. These were further investigated in Asian and White European RPL cohorts, and in Bangladeshi controls. FKBP4, encoding the immunophilin FK506 binding protein 4, was identified as a plausible candidate, with three further novel variants identified in Asian patients. None were found in European patients or controls. In silico structural studies predicted damaging effects of the variants in the structure-function properties of the FKBP52 protein. These were located domains reported to be involved in Hsp90 binding and peptidyl-prolyl cic-trans isomerase (PPIase) activity. Profound effects on PPIase activity were demonstrated in transiently transfected HEK293 cells comparing wildtype and mutant FKBP4 constructs. Mice lacking Fkbp4 have been previously reported as infertile through implantation failure. This study therefore strongly implicates FKBP4 as associated with fetal losses in humans, particularly in the Asian population. [Abstract copyright: © The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: [email protected].

    Mutation of SALL2 causes recessive ocular coloboma in humans and mice.

    Get PDF
    Ocular coloboma is a congenital defect resulting from failure of normal closure of the optic fissure during embryonic eye development. This birth defect causes childhood blindness worldwide, yet the genetic etiology is poorly understood. Here, we identified a novel homozygous mutation in the SALL2 gene in members of a consanguineous family affected with non-syndromic ocular coloboma variably affecting the iris and retina. This mutation, c.85G>T, introduces a premature termination codon (p.Glu29*) predicted to truncate the SALL2 protein so that it lacks three clusters of zinc-finger motifs that are essential for DNA-binding activity. This discovery identifies SALL2 as the third member of the Drosophila homeotic Spalt-like family of developmental transcription factor genes implicated in human disease. SALL2 is expressed in the developing human retina at the time of, and subsequent to, optic fissure closure. Analysis of Sall2-deficient mouse embryos revealed delayed apposition of the optic fissure margins and the persistence of an anterior retinal coloboma phenotype after birth. Sall2-deficient embryos displayed correct posterior closure toward the optic nerve head, and upon contact of the fissure margins, dissolution of the basal lamina occurred and PAX2, known to be critical for this process, was expressed normally. Anterior closure was disrupted with the fissure margins failing to meet, or in some cases misaligning leading to a retinal lesion. These observations demonstrate, for the first time, a role for SALL2 in eye morphogenesis and that loss of function of the gene causes ocular coloboma in humans and mice

    Gain-of-function mutations in the phosphatidylserine synthase 1 (PTDSS1) gene cause Lenz-Majewski syndrome

    Get PDF
    Lenz-Majewski syndrome (LMS) is a syndrome of intellectual disability and multiple congenital anomalies that features generalized craniotubular hyperostosis. By using whole-exome sequencing and selecting variants consistent with the predicted dominant de novo etiology of LMS, we identified causative heterozygous missense mutations in PTDSS1, which encodes phosphatidylserine synthase 1 (PSS1). PSS1 is one of two enzymes involved in the production of phosphatidylserine. Phosphatidylserine synthesis was increased in intact fibroblasts from affected individuals, and end-product inhibition of PSS1 by phosphatidylserine was markedly reduced. Therefore, these mutations cause a gain-of-function effect associated with regulatory dysfunction of PSS1. We have identified LMS as the first human disease, to our knowledge, caused by disrupted phosphatidylserine metabolism. Our results point to an unexplored link between phosphatidylserine synthesis and bone metabolism
    • …
    corecore