116 research outputs found

    Real-world burden of comorbidities in US patients with psoriasis

    Get PDF
    Background Understanding background comorbidity rates in psoriasis can provide perspective for adverse events associated with new therapies. Objective We sought to assess the extent of comorbidities in psoriasis patients by use of the Truven Health Analytics MarketScan database. Methods MarketScan, comprising commercial claims representative of a large US-insured population, had 1.22 million patients with ≥1 claim with a psoriasis diagnosis between January 1, 2008, and December 31, 2014. Patients ≥18 years of age who had ≥2 health claims in any diagnosis field for psoriasis (International Classification of Diseases, 9th Revision, Clinical Modification 696.1) with a psoriasis diagnosis (index) date between July 1, 2008, and June 30, 2014, were included to allow follow-up observation time. Results Prevalence and incidence of 24 comorbidities were assessed in 469,097 psoriasis patients; the most common comorbidities were hyperlipidemia (45.64% and 30.83%, respectively), hypertension (42.19% and 24.19%), depression (17.91% and 12.68%), type 2 diabetes mellitus (17.45% and 8.44%), and obesity (14.38% and 11.57%). Limitations A limitation of the study was that only a certain insured population was represented. Conclusions Comorbidity rates align with those described in the literature and support the concept that psoriasis patients have high rates of cardiometabolic comorbidities. This analysis highlights the potential utility of very large insurance databases for determining comorbidity prevalence in psoriasis, which may aid health care providers in managing psoriasis

    X Chromosome Inactivation and Differentiation Occur Readily in ES Cells Doubly-Deficient for MacroH2A1 and MacroH2A2

    Get PDF
    Macrohistones (mH2As) are unusual histone variants found exclusively in vertebrate chromatin. In mice, the H2afy gene encodes two splice variants, mH2A1.1 and mH2A1.2 and a second gene, H2afy2, encodes an additional mH2A2 protein. Both mH2A isoforms have been found enriched on the inactive X chromosome (Xi) in differentiated mammalian female cells, and are incorporated into the chromatin of developmentally-regulated genes. To investigate the functional significance of mH2A isoforms for X chromosome inactivation (XCI), we produced male and female embryonic stem cell (ESC) lines with stably-integrated shRNA constructs that simultaneously target both mH2A1 and mH2A2. Surprisingly, we find that female ESCs deficient for both mH2A1 and mH2A2 readily execute and maintain XCI upon differentiation. Furthermore, male and female mH2A-deficient ESCs proliferate normally under pluripotency culture conditions, and respond to several standard differentiation procedures efficiently. Our results show that XCI can readily proceed with substantially reduced total mH2A content

    Functional and molecular characterization of hyposensitive underactive bladder tissue and urine in streptozotocin-induced diabetic rat

    Get PDF
    Background: The functional and molecular alterations of nerve growth factor (NGF) and Prostaglandin E2 (PGE2) and its receptors were studied in bladder and urine in streptozotocin (STZ)-induced diabetic rats. Methodology/Principal Findings: Diabetes mellitus was induced with a single dose of 45 mg/kg STZ Intraperitoneally (i.p) in female Sprague-Dawley rats. Continuous cystometrogram were performed on control rats and STZ treated rats at week 4 or 12 under urethane anesthesia. Bladder was then harvested for histology, expression of EP receptors and NGF by western blotting, PGE2 levels by ELISA, and detection of apoptosis by TUNEL staining. In addition, 4-hr urine was collected from all groups for urine levels of PGE2, and NGF assay. DM induced progressive increase of bladder weight, urine production, intercontraction interval (ICI) and residual urine in a time dependent fashion. Upregulation of Prostaglandin E receptor (EP)1 and EP3 receptors and downregulation of NGF expression, increase in urine NGF and decrease levels of urine PGE2 at week 12 was observed. The decrease in ICI by intravesical instillation of PGE2 was by 51% in control rats and 31.4% in DM group at week 12. Conclusions/Significance: DM induced hyposensitive underactive bladder which is characterized by increased inflammatory reaction, apoptosis, urine NGF levels, upregulation of EP1 and EP3 receptors and decreased bladder NGF and urine PGE2. The data suggest that EP3 receptor are potential targets in the treatment of diabetes induced underactive bladder. © 2014 Nirmal et al

    Immunopositivity for Histone MacroH2A1 Isoforms Marks Steatosis-Associated Hepatocellular Carcinoma.

    Get PDF
    Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Prevention and risk reduction are important and the identification of specific biomarkers for early diagnosis of HCC represents an active field of research. Increasing evidence indicates that fat accumulation in the liver, defined as hepatosteatosis, is an independent and strong risk factor for developing an HCC. MacroH2A1, a histone protein generally associated with the repressed regions of chromosomes, is involved in hepatic lipid metabolism and is present in two alternative spliced isoforms, macroH2A1.1 and macroH2A1.2. These isoforms have been shown to predict lung and colon cancer recurrence but to our knowledge, their role in fatty-liver associated HCC has not been investigated previously

    Combined Analysis of Murine and Human Microarrays and ChIP Analysis Reveals Genes Associated with the Ability of MYC To Maintain Tumorigenesis

    Get PDF
    The MYC oncogene has been implicated in the regulation of up to thousands of genes involved in many cellular programs including proliferation, growth, differentiation, self-renewal, and apoptosis. MYC is thought to induce cancer through an exaggerated effect on these physiologic programs. Which of these genes are responsible for the ability of MYC to initiate and/or maintain tumorigenesis is not clear. Previously, we have shown that upon brief MYC inactivation, some tumors undergo sustained regression. Here we demonstrate that upon MYC inactivation there are global permanent changes in gene expression detected by microarray analysis. By applying StepMiner analysis, we identified genes whose expression most strongly correlated with the ability of MYC to induce a neoplastic state. Notably, genes were identified that exhibited permanent changes in mRNA expression upon MYC inactivation. Importantly, permanent changes in gene expression could be shown by chromatin immunoprecipitation (ChIP) to be associated with permanent changes in the ability of MYC to bind to the promoter regions. Our list of candidate genes associated with tumor maintenance was further refined by comparing our analysis with other published results to generate a gene signature associated with MYC-induced tumorigenesis in mice. To validate the role of gene signatures associated with MYC in human tumorigenesis, we examined the expression of human homologs in 273 published human lymphoma microarray datasets in Affymetrix U133A format. One large functional group of these genes included the ribosomal structural proteins. In addition, we identified a group of genes involved in a diverse array of cellular functions including: BZW2, H2AFY, SFRS3, NAP1L1, NOLA2, UBE2D2, CCNG1, LIFR, FABP3, and EDG1. Hence, through our analysis of gene expression in murine tumor models and human lymphomas, we have identified a novel gene signature correlated with the ability of MYC to maintain tumorigenesis

    Evolutionary diversity and developmental regulation of X-chromosome inactivation

    Get PDF
    X-chromosome inactivation (XCI) results in the transcriptional silencing of one X-chromosome in females to attain gene dosage parity between XX female and XY male mammals. Mammals appear to have developed rather diverse strategies to initiate XCI in early development. In placental mammals XCI depends on the regulatory noncoding RNA X-inactive specific transcript (Xist), which is absent in marsupials and monotremes. Surprisingly, even placental mammals show differences in the initiation of XCI in terms of Xist regulation and the timing to acquire dosage compensation. Despite this, all placental mammals achieve chromosome-wide gene silencing at some point in development, and this is maintained by epigenetic marks such as chromatin modifications and DNA methylation. In this review, we will summarise recent findings concerning the events that occur downstream of Xist RNA coating of the inactive X-chromosome (Xi) to ensure its heterochromatinization and the maintenance of the inactive state in the mouse and highlight similarities and differences between mammals

    Microarray analysis of LTR retrotransposon silencing identifies Hdac1 as a regulator of retrotransposon expression in mouse embryonic stem cells

    Get PDF
    Retrotransposons are highly prevalent in mammalian genomes due to their ability to amplify in pluripotent cells or developing germ cells. Host mechanisms that silence retrotransposons in germ cells and pluripotent cells are important for limiting the accumulation of the repetitive elements in the genome during evolution. However, although silencing of selected individual retrotransposons can be relatively well-studied, many mammalian retrotransposons are seldom analysed and their silencing in germ cells, pluripotent cells or somatic cells remains poorly understood. Here we show, and experimentally verify, that cryptic repetitive element probes present in Illumina and Affymetrix gene expression microarray platforms can accurately and sensitively monitor repetitive element expression data. This computational approach to genome-wide retrotransposon expression has allowed us to identify the histone deacetylase Hdac1 as a component of the retrotransposon silencing machinery in mouse embryonic stem cells, and to determine the retrotransposon targets of Hdac1 in these cells. We also identify retrotransposons that are targets of other retrotransposon silencing mechanisms such as DNA methylation, Eset-mediated histone modification, and Ring1B/Eed-containing polycomb repressive complexes in mouse embryonic stem cells. Furthermore, our computational analysis of retrotransposon silencing suggests that multiple silencing mechanisms are independently targeted to retrotransposons in embryonic stem cells, that different genomic copies of the same retrotransposon can be differentially sensitive to these silencing mechanisms, and helps define retrotransposon sequence elements that are targeted by silencing machineries. Thus repeat annotation of gene expression microarray data suggests that a complex interplay between silencing mechanisms represses retrotransposon loci in germ cells and embryonic stem cells
    corecore