16 research outputs found

    A Wearable Fingertip Force Feedback Device System for Object Stiffness Sensing

    No full text
    Virtual reality technology brings a new experience to human-computer interaction, while wearable force feedback devices can enhance the immersion of users in interaction. This paper proposes a wearable fingertip force feedback device that uses a tendon drive mechanism, with the aim of simulating the stiffness characteristics of objects within virtual scenes. The device adjusts the rotation angle of the torsion spring through a DC motor, and then uses a wire to convert the torque into a feedback force at the user’s index fingertips, with an output force of up to 4 N and a force change rate of up to 10 N/s. This paper introduces the mechanical structure and design process of the force feedback device, and conducts a mechanical analysis of the device to select the appropriate components. Physical and psychological experiments are conducted to comprehensively evaluate the device’s performance in conveying object stiffness information. The results show that the device can simulate different stiffness characteristics of objects, and users can distinguish objects with different stiffness characteristics well when wearing the force feedback device and interacting with the three-dimensional virtual environments

    Research on the Spatial Distribution Pattern and Influencing Factors of China’s Antipoverty (Pro-Poor Tourism) on GIS

    No full text
    Eliminating poverty is the common mission of all mankind, and it is also an important task faced by many countries. Pro-poor tourism villages are an active attempt by China to use rural tourism to escape poverty. This paper aims to provide theoretical support for consolidating the results of poverty alleviation and achieving comprehensive poverty alleviation and to provide a scientific basis for policy formulation by using GIS spatial analysis to study the spatial distribution characteristics and influencing factors of 22,651 pro-poor tourism villages in China. The findings revealed that the spatial distribution of pro-poor tourism villages is roughly divided by the Hu line. Pro-poor tourism villages show an uneven agglomeration pattern and present a spatial pattern of dense southeast and sparse northwest with six high-density core areas, among which some cities in the southwest are H-H agglomeration areas. Specifically, topography, annual rainfall, endowment of tourism resources, location transportation, and policy orientation are important factors affecting the spatial distribution of pro-poor tourism villages

    Enzyme Method-Based Microfluidic Chip for the Rapid Detection of Copper Ions

    No full text
    Metal ions in high concentrations can pollute the marine environment. Human activities and industrial pollution are the causes of Cu2+ contamination. Here, we report our discovery of an enzyme method-based microfluidic that can be used to rapidly detect Cu2+ in seawater. In this method, Cu2+ is reduced to Cu+ to inhibit horseradish peroxidase (HRP) activity, which then results in the color distortion of the reaction solution. The chip provides both naked eye and spectrophotometer modalities. Cu2+ concentrations have an ideal linear relationship, with absorbance values ranging from 3.91 nM to 256 μM. The proposed enzyme method-based microfluidic chip detects Cu2+ with a limit of detection (LOD) of 0.87 nM. Other common metal ions do not affect the operation of the chip. The successful detection of Cu2+ was achieved using three real seawater samples, verifying the ability of the chip in practical applications. Furthermore, the chip realizes the functions of two AND gates in series and has potential practical implementations in biochemical detection and biological computing

    Enzyme Method-Based Microfluidic Chip for the Rapid Detection of Copper Ions

    No full text
    Metal ions in high concentrations can pollute the marine environment. Human activities and industrial pollution are the causes of Cu2+ contamination. Here, we report our discovery of an enzyme method-based microfluidic that can be used to rapidly detect Cu2+ in seawater. In this method, Cu2+ is reduced to Cu+ to inhibit horseradish peroxidase (HRP) activity, which then results in the color distortion of the reaction solution. The chip provides both naked eye and spectrophotometer modalities. Cu2+ concentrations have an ideal linear relationship, with absorbance values ranging from 3.91 nM to 256 μM. The proposed enzyme method-based microfluidic chip detects Cu2+ with a limit of detection (LOD) of 0.87 nM. Other common metal ions do not affect the operation of the chip. The successful detection of Cu2+ was achieved using three real seawater samples, verifying the ability of the chip in practical applications. Furthermore, the chip realizes the functions of two AND gates in series and has potential practical implementations in biochemical detection and biological computing

    Study on the Mechanism of Water and Sand Leakage in a Foundation Pit Retaining Structure Based on the Computational Fluid Dynamics–Discrete Element Method

    No full text
    The existence of defects in the enclosure structure is the primary cause of water and sand leakage in foundation pits, as well as being a significant source of danger in pit construction, but current research lacks an in-depth investigation of the generation mechanism and gestation process. In this paper, which comprehensively considers the microscopic particles and macroscopic level, the development mechanism of a water and sand leakage disaster in a foundation pit with a water-rich sand layer was studied using the principle of computational fluid dynamics and discrete element method coupled analysis (CFD–DEM); moreover, based on the anisotropy of the particle force and fluid energy analysis, the deformation of the stratum and ground stress field were analyzed. The results show that the stress field will produce a plugging effect at a certain distance from the defect, and the strata exhibit a dominant displacement tendency in the vertical direction, resulting in the emergence of a gradually concave stress relaxation zone and an elliptical contour in the strata displacement map near the defect. The fluid energy describes the displacement of the sand layer very well, and it is separated into the sand layer’s centralized loss region and the major loss area based on the high and low levels of the fluid energy class. The impact of fluid at the defect reaches the maximum kinetic energy, which penetrates the structural weakness and causes the loss of sand particles, and the cross-section of the water influx near the defect gradually expands with the loss of particles, indicating that there is a danger of further expansion of the defect under the impact of water flow. These results have technical implications for the management of water and sand leakage disasters in foundation pit engineering

    Highly Compression-Tolerant Supercapacitor Based on Polypyrrole-Mediated Graphene Foam Electrodes

    No full text
    Deformation-tolerant devices are vital for the development of high-tech electronics of unconventional forms. in this study, a highly compressible supercapacitor has been fabricated by using newly developed polypyrrole-mediated graphene foam as electrode. the assembled supercapacitor performs based on the unique and robust foam electrodes achieves superb compression tolerance without significant variation of capacitances under long-term compressive loading and unloading processes

    Long-term outcome of adjuvant radiotherapy upon postoperative relapse of centrally located hepatocellular carcinoma: a real-world study

    No full text
    Abstract Despite that surgical resection is widely regarded as the most effective approach to the treatment of liver cancer, its safety and efficacy upon centrally located hepatocellular carcinoma (HCC) remain unsatisfactory. In consequence, seeking an integrated treatment, like combined with adjuvant radiotherapy, to enhance the prognosis of patients is of critical importance. By recruiting patients undergoing surgical resection for centrally located HCC ranging from June 2015 to 2020, they were divided into liver resection combined with adjuvant radiotherapy (LR + RT) and mere liver resection (LR) groups. The calculation of propensity score and model of Cox proportional hazards regression were utilized. 193 patients were recruited in aggregation, containing 88 ones undergoing LR + RT, while 105 handled with LR. RT was verified to be an independent factor of prognosis for relapse (HR 0.60). In propensity-score analyses, significant association existed between adjuvant radiotherapy and better disease-free survival (DFS) (Matched, HR 0.60; Adjustment of propensity score, HR 0.60; Inverse probability weighting, HR 0.63). The difference of DFS was apparent within two groups (p value = 0.022), and RT significantly down-regulated early relapse (p value < 0.05) in subgroup analysis. The calculation of E-value revealed robustness of unmeasured confounding. The combination of liver surgical resection with RT is safe and effective towards patients with centrally located HCC, which would notably enhance the prognosis and decrease the early relapse of HCC

    New Insight into the In Situ SO2 Poisoning Mechanism over Cu-SSZ-13 for the Selective Catalytic Reduction of NOx with NH3

    No full text
    To reveal the nature of SO2 poisoning over Cu-SSZ-13 catalyst under actual exhaust conditions, the catalyst was pretreated at 200 and 500 &deg;C in a flow containing NH3, NO, O2, SO2, and H2O. Brunner&minus;Emmet&minus;Teller (BET), X-ray diffraction(XRD), thermo gravimetric analyzer (TGA), ultraviolet Raman spectroscopy (UV Raman), temperature-programmed reduction with H2 (H2-TPR), temperature-programmed desorption of NO+O2 (NO+O2-TPD), NH3-TPD, in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS), and an activity test were utilized to monitor the changes of Cu-SSZ-13 before and after in situ SO2 poisoning. According to the characterization results, the types and generated amount of sulfated species were directly related to poisoning temperature. Three sulfate species, including (NH4)2SO4, CuSO4, and Al2(SO4)3, were found to form on CZ-S-200, while only the latter two sulfate species were observed over CZ-S-500. Furthermore, SO2 poisoning had a negative effect on low-temperature selective catalytic reduction (SCR) activity, which was mainly due to the sulfation of active sites, including Z2Cu, ZCuOH, and Si-O(H)-Al. In contrast, SO2 poisoning had a positive effect on high-temperature SCR activity, owing to the inhibition of the NH3 oxidation reaction. The above findings may be a useful guideline to design excellent SO2-resistant Cu-based zeolite catalysts

    Dual-loaded nano pesticide system based on industrial grade scaleable carrier materials with combinatory efficacy and improved safety

    No full text
    Abstract Repeated and widespread use of single chemical pesticides raises concerns about efficiency and safety, developing multi-component synergistic pesticides provides a new route for efficient control of diseases. Most commercial compound formulations are open systems with non-adjustable released rates, resulting in a high frequency of applications. Meanwhile, although nano pesticide delivery systems constructed with different carrier materials have been extensively studied, realizing their actual scale-up production still has important practical significance due to the large-scale field application. In this study, a boscalid and pyraclostrobin dual-loaded nano pesticide system (BPDN) was constructed with industrial-grade carrier materials to facilitate the realization of large-scale production. The optimal industrial-scale preparation mechanism of BPDN was studied with surfactants as key factors. When agricultural emulsifier No.600 and polycarboxylate are used as the ratio of 1:2 in the preparation process, the BPDN has a spherical structure with an average size of 270 nm and exhibits superior physical stability. Compared with commercial formulation, BPDN maintains rate-stabilized release up to 5 times longer, exhibits better dispersion and spreading performance on foliar, has more than 20% higher deposition amounts, and reduces loss. A single application of BPDN could efficiently control tomato gray mold during the growing period of tomatoes due to extended duration and combinatory effectiveness, reducing two application times and labor costs. Toxicology tests on various objects systematically demonstrated that BPDN has improved safety for HepG2 cells, and nontarget organism earthworms. This research provides insight into creating safe, efficient, and environmentally friendly pesticide production to reduce manual operation times and labor costs. Accompanied by production strategies that can be easily scaled up industrially, this contributes to the efficient use of resources for sustainable agriculture

    Preparation, Characterization, and Evaluation of Pyraclostrobin Nanocapsules by In Situ Polymerization

    No full text
    In this study, pyraclostrobin nanocapsules were prepared by in situ polymerization with urea&ndash;formaldehyde resin as a wall material. The effects of different emulsifiers, emulsifier concentrations, and solvents on the physicochemical properties of pyraclostrobin nanocapsules were investigated. Solvesso&trade; 100 was selected as the solvent, and Emulsifier 600# was used as the emulsifier, which accounted for 5% of the aqueous phase system, to prepare pyraclostrobin nanocapsules with excellent physical and chemical properties. The particle size, &zeta; potential, and morphology of the nanocapsules were characterized by a particle size analyzer and transmission electron microscope. The nanocapsules were analyzed by Fourier-transform infrared spectroscopy, and the loading content and sustained release properties of the nanocapsules were measured. The results show that the size of the prepared nanocapsules was 261.87 nm, and the polydispersity index (PDI) was 0.12, presenting a uniform spherical appearance. The loading content of the pyraclostrobin nanocapsules was 14.3%, and their cumulative release rate was 70.99% at 250 h, providing better efficacy and sustainability compared with the pyraclostrobin commercial formulation
    corecore