1,787 research outputs found
Pars plana vitrectomy for diabetic fibrovascular proliferation with and without internal limiting membrane peeling.
[[abstract]]"ObjectiveTo evaluate the anatomical and functional results of internal limiting membrane (ILM) peeling during pars plana vitrectomy for fibrovascular proliferation (FVP) in diabetic retinopathy.MethodsThe study was a prospective comparative case series in design. Patients undergoing pars plana vitrectomy for mild to moderate diabetic FVP were divided into either Group 1: vitrectomy only, or Group 2: further ILM peeling in the macular area. Best-corrected visual acuity, fundus examination, and optical coherence tomography (OCT) were conducted at 3 and 6 months postoperatively.ResultsThere were 26 eyes of 25 patients in Group 1 (non-ILM peeling) and 23 eyes of 22 patients in Group 2 (ILM peeling). At 6 months postoperatively, OCT-identifiable epiretinal membrane (ERM) was found in 10 of 26 eyes (38.5%) in Group 1and 0 of 23 eyes in Group 2 (P=0.001) and six eyes (23.1%) in Group 1 developed biomicroscopic ERM, whereas no patients in Group 2 had ERM (P=0.02) at 6 months. OCT identifiable ERM correlated significantly with central macular thickness (r=−0.58, P<0.001), the presence of intraretinal cystic space (r=0.60, P<0.001), and fovea depression reappearance (r=0.36, P=0.008). Factors associated with poor visual outcome were macular detachment (P<0.001) and non-ILM peeling (P=0.004).ConclusionsThis pilot study suggests that ILM peeling during vitrectomy for diabetic fibrovascular proliferative membranes may minimize postoperative ERM formation and improve visual prognosis.Eye (2009) 23, 960–965; doi:10.1038/eye.2008.334; published online 7 November 2008[ABSTRACT FROM AUTHOR]
Copyright of Eye is the property of Nature Publishing Group and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract.Copyright applies to all Abstracts.
Efficacy of Functional Magnetic Stimulation in Neurogenic Bowel Dysfunction after Spinal Cord Injury
[[abstract]]Objective: The aims of this study were to assess the usefulness of functional magnetic stimulation in controlling neurogenic bowel dysfunction in spinal cord injured patients with supraconal and conal/caudal lesions, and to investigate the efficacy of this regimen with a 3-month follow-up.
Design: A longitudinal, prospective before-after trial.
Subjects: A total of 22 patients with chronic spinal cord injured and intractable neurogenic bowel dysfunction. They were divided into group 1 (supraconal lesion) and group 2 (conal/caudal lesion).
Methods: The colonic transit time assessment and Knowles-Eccersley-Scott Symptom Questionnaire were carried out for each patient before they received a 3-week functional magnetic stimulation protocol and on the day following the treatment.
Results and conclusion: Following functional magnetic stimulation, the mean colonic transit time for all patients decreased from 62.6 to 50.4 h (p < 0.001). The patients’ Knowles-Eccersley-Scott Symptom scores decreased from 24.5 to 19.2 points (p < 0.001). The colonic transit time decrement in both group 1 (p = 0.003) and group 2 (p = 0.043) showed significant differences, as did the Knowles-Eccersley-Scott Symptom score in both groups following stimulation and in the 3-month follow-up results (p < 0.01). The improvements in bowel function indicate that functional magnetic stimulation, featuring broad-spectrum application, can be incorporated successfully into other therapies as an optimal adjuvant treatment for neurogenic bowel dysfunction resulting from spinal cord injury.[[journaltype]]國外[[incitationindex]]SCI[[booktype]]紙本[[countrycodes]]SW
Recommended from our members
Eye movements and reading in glaucoma: observations on patients with advanced visual field loss
Purpose To investigate the relationship between reading speed and eye movements in patients with advanced glaucomatous visual field (VF) defects and age-similar visually healthy people. Methods Eighteen patients with advanced bilateral VF defects (mean age: 71, standard deviation [SD]: 7 years) and 39
controls (mean age: 67, SD: 8 years) had reading speed measured using short passages of text on a computer set-up incorporating eye tracking. Scanpaths were plotted and analysed from these experiments to derive measures of ‘perceptual span’ (total number of letters read per number of saccades) and ‘text saturation’ (the distance between the first and last fixation on lines of text). Another eye movement measure, termed ‘saccadic frequency’ (total number of saccades made to read a single word), was derived from a separate lexical decision task, where words were presented in isolation. Results Significant linear association was demonstrated between perceptual span and reading speed in patients (R2=0.42) and controls (R2=0.56). Linear association between saccadic frequency during the LDT and reading speed was also found in patients (R2=0.42), but not in controls (R2=0.02). Patients also exhibited greater average text saturation than controls (P=0.004). Conclusion Some, but not all, patients with advanced VF defects read slower than controls using short text passages. Differences in eye movement behaviour may partly account for this variability in patients. These patients were shown to saturate lines of text more during reading, which may explain previously-reported difficulties with sustained reading
Structural basis for the RING catalyzed synthesis of K63 linked ubiquitin chains
This work was supported by grants from Cancer Research UK (C434/A13067), the Wellcome Trust (098391/Z/12/Z) and Biotechnology and Biological Sciences Research Council (BB/J016004/1).The RING E3 ligase catalysed formation of lysine 63 linked ubiquitin chains by the Ube2V2–Ubc13 E2 complex is required for many important biological processes. Here we report the structure of the RING domain dimer of rat RNF4 in complex with a human Ubc13~Ub conjugate and Ube2V2. The structure has captured Ube2V2 bound to the acceptor (priming) ubiquitin with Lys63 in a position that could lead to attack on the linkage between the donor (second) ubiquitin and Ubc13 that is held in the active “folded back” conformation by the RING domain of RNF4. The interfaces identified in the structure were verified by in vitro ubiquitination assays of site directed mutants. This represents the first view of the synthesis of Lys63 linked ubiquitin chains in which both substrate ubiquitin and ubiquitin-loaded E2 are juxtaposed to allow E3 ligase mediated catalysis.PostprintPeer reviewe
Preferential Paths of Air-water Two-phase Flow in Porous Structures with Special Consideration of Channel Thickness Effects.
Accurate understanding and predicting the flow paths of immiscible two-phase flow in rocky porous structures are of critical importance for the evaluation of oil or gas recovery and prediction of rock slides caused by gas-liquid flow. A 2D phase field model was established for compressible air-water two-phase flow in heterogenous porous structures. The dynamic characteristics of air-water two-phase interface and preferential paths in porous structures were simulated. The factors affecting the path selection of two-phase flow in porous structures were analyzed. Transparent physical models of complex porous structures were prepared using 3D printing technology. Tracer dye was used to visually observe the flow characteristics and path selection in air-water two-phase displacement experiments. The experimental observations agree with the numerical results used to validate the accuracy of phase field model. The effects of channel thickness on the air-water two-phase flow behavior and paths in porous structures were also analyzed. The results indicate that thick channels can induce secondary air flow paths due to the increase in flow resistance; consequently, the flow distribution is different from that in narrow channels. This study provides a new reference for quantitatively analyzing multi-phase flow and predicting the preferential paths of immiscible fluids in porous structures
TIAF1 self-aggregation in peritumor capsule formation, spontaneous activation of SMAD-responsive promoter in p53-deficient environment, and cell death
Self-aggregation of transforming growth factor β (TGF-β)1-induced antiapoptotic factor (TIAF1) is known in the nondemented human hippocampus, and the aggregating process may lead to generation of amyloid β (Aβ) for causing neurodegeneration. Here, we determined that overexpressed TIAF1 exhibits as aggregates together with Smad4 and Aβ in the cancer stroma and peritumor capsules of solid tumors. Also, TIAF1/Aβ aggregates are shown on the interface between brain neural cells and the metastatic cancer cell mass. TIAF1 is upregulated in developing tumors, but may disappear in established metastatic cancer cells. Growing neuroblastoma cells on the extracellular matrices from other cancer cell types induced production of aggregated TIAF1 and Aβ. In vitro induction of TIAF1 self-association upregulated the expression of tumor suppressors Smad4 and WW domain-containing oxidoreductase (WOX1 or WWOX), and WOX1 in turn increased the TIAF1 expression. TIAF1/Smad4 interaction further enhanced Aβ formation. TIAF1 is known to suppress SMAD-regulated promoter activation. Intriguingly, without p53, self-aggregating TIAF1 spontaneously activated the SMAD-regulated promoter. TIAF1 was essential for p53-, WOX1- and dominant-negative JNK1-induced cell death. TIAF1, p53 and WOX1 acted synergistically in suppressing anchorage-independent growth, blocking cell migration and causing apoptosis. Together, TIAF1 shows an aggregation-dependent control of tumor progression and metastasis, and regulation of cell death
Lead Increases Lipopolysaccharide-Induced Liver Injury through Tumor Necrosis Factor-α Overexpression by Monocytes/Macrophages: Role of Protein Kinase C and p42/44 Mitogen-Activated Protein Kinase
Although lead and lipopolysaccharide (LPS), both important environmental pollutants, activate cells through different receptors and participate in distinct upstream signaling pathways, Pb increases the amount of LPS-induced tumor necrosis factor-α (TNF-α). We examined the cells responsible for the excess production of Pb-increased LPS-induced TNF-α and liver injury, and the roles of protein kinase C (PKC) and p42/44 mitogen-activated protein kinase (MAPK) in the induction of TNF-α. Peritoneal injection of Pb alone (100 μmol/kg) or a low dose of LPS (5 mg/kg) did not affect serum TNF-α or liver functions in A/J mice. In contrast, coexposure to these noneffective doses of Pb plus LPS (Pb+LPS) strongly induced TNF-α expression and resulted in profound liver injury. Direct inhibition of TNF-α or functional inactivation of monocytes/macrophages significantly decreased the level of Pb+LPS-induced serum TNF-α and concurrently ameliorated liver injury. Pb+LPS coexposure stimulated the phosphorylation of p42/44 MAPK and the expression of TNF-α in CD14(+) cells of cultured mouse whole blood, peritoneal macrophages, and RAW264.7 cells. Moreover, blocking PKC or MAPK effectively reduced Pb+LPS-induced TNF-α expression and liver injury. In summary, monocytes/macrophages were the cells primarily responsible for producing, through the PKC/MAPK pathway, the excess Pb-increased/LPS-induced TNF-α that caused liver injury
Safety and feasibility of switching from phenytoin to levetiracetam monotherapy for glioma-related seizure control following craniotomy: a randomized phase II pilot study
Seizures are common in patients with gliomas, and phenytoin (PHT) is frequently used to control tumor-related seizures. PHT, however, has many undesirable side effects (SEs) and drug interactions with glioma chemotherapy. Levetiracetam (LEV) is a newer antiepileptic drug (AED) with fewer SEs and essentially no drug interactions. We performed a pilot study testing the safety and feasibility of switching patients from PHT to LEV monotherapy for postoperative control of glioma-related seizures. Over a 13-month period, 29 patients were randomized in a 2:1 ratio to initiate LEV therapy within 24 h of surgery or to continue PHT therapy. 6 month follow-up data were available for 15 patients taking LEV and for 8 patients taking PHT. In the LEV group, 13 patients (87%) were seizure-free. In the PHT group, 6 patients (75%) were seizure-free. Reported SEs at 6 months was as follows (%LEV/%PHT group): dizziness (0/14), difficulty with coordination (0/29), depression (7/14) lack of energy or strength (20/43), insomnia (40/43), mood instability (7/0). The pilot data presented here suggest that it is safe to switch patients from PHT to LEV monotherapy following craniotomy for supratentorial glioma. A large-scale, double-blinded, randomized control trial of LEV versus PHT is required to determine seizure control equivalence and better assess differences in SEs
4β-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest
<p>Abstract</p> <p>Background</p> <p>The crude extract of the fruit bearing plant, <it>Physalis peruviana </it>(golden berry), demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown.</p> <p>Methods</p> <p>Herein, we isolated the main pure compound, 4β-Hydroxywithanolide (4βHWE) derived from golden berries, and investigated its antiproliferative effect on a human lung cancer cell line (H1299) using survival, cell cycle, and apoptosis analyses. An alkaline comet-nuclear extract (NE) assay was used to evaluate the DNA damage due to the drug.</p> <p>Results</p> <p>It was shown that DNA damage was significantly induced by 1, 5, and 10 μg/mL 4βHWE for 2 h in a dose-dependent manner (<it>p </it>< 0.005). A trypan blue exclusion assay showed that the proliferation of cells was inhibited by 4βHWE in both dose- and time-dependent manners (<it>p </it>< 0.05 and 0.001 for 24 and 48 h, respectively). The half maximal inhibitory concentrations (IC<sub>50</sub>) of 4βHWE in H1299 cells for 24 and 48 h were 0.6 and 0.71 μg/mL, respectively, suggesting it could be a potential therapeutic agent against lung cancer. In a flow cytometric analysis, 4βHWE produced cell cycle perturbation in the form of sub-G<sub>1 </sub>accumulation and slight arrest at the G<sub>2</sub>/M phase with 1 μg/mL for 12 and 24 h, respectively. Using flow cytometric and annexin V/propidium iodide immunofluorescence double-staining techniques, these phenomena were proven to be apoptosis and complete G<sub>2</sub>/M arrest for H1299 cells treated with 5 μg/mL for 24 h.</p> <p>Conclusions</p> <p>In this study, we demonstrated that golden berry-derived 4βHWE is a potential DNA-damaging and chemotherapeutic agent against lung cancer.</p
Parity-Violating Electron Scattering from 4He and the Strange Electric Form Factor of the Nucleon
We have measured the parity-violating electroweak asymmetry in the elastic
scattering of polarized electrons from ^4He at an average scattering angle
= 5.7 degrees and a four-momentum transfer Q^2 = 0.091 GeV^2. From
these data, for the first time, the strange electric form factor of the nucleon
G^s_E can be isolated. The measured asymmetry of A_PV = (6.72 +/- 0.84 (stat)
+/- 0.21 (syst) parts per million yields a value of G^s_E = -0.038 +/- 0.042
(stat) +/- 0.010 (syst), consistent with zero
- …