881 research outputs found
Recommended from our members
Exosomal miRNA 16-5p/29a-3p from pancreatic cancer induce adipose atrophy by inhibiting adipogenesis and promoting lipolysis.
Over 80% of the patients with pancreatic ductal adenocarcinoma (PDAC) have cachexia/wasting syndrome. Cachexia is associated with reduced survival, decreased quality of life, and higher metastasis rates. Here, we demonstrate that fat loss is the earliest feature of PDAC-exosome-induced cachexia. MicroRNA sequencing of exosomal components from normal and cancer-derived exosomes revealed enrichment of miR-16-5p, miR-21-5p, miR-29a-3p, and miR-125b-5p in serum exosomes of mice harboring PDAC and patients with PDAC. Further, miR-16-5p and miR-29a-3p inhibited adipogenesis through decreasing Erlin2 and Cmpk1 expression which downregulates C/EBPβ and PPARγ. Synergistically, miR-29a-3p promotes lipolysis through increasing ATGL expression by suppressing MCT1 expression. Furthermore, PDAC-exosomes deprived of miR-16-5p and miR-29a-3p fail to induce fat loss. Hence, miR-16-5p and miR-29a-3p exosomal miRs are essential for PDAC-induced fat loss. Thus, we unravel that PDAC induces adipose atrophy via exosomal miRs. This knowledge may provide new diagnostic and therapeutic strategies for PDAC-induced cachexia
Adhesive L1CAM-Robo Signaling Aligns Growth Cone F-Actin Dynamics to Promote Axon-Dendrite Fasciculation in C. elegans
Neurite fasciculation through contact-dependent signaling is important for the wiring and function of the neuronal circuits. Here, we describe a type of axon-dendrite fasciculation in C. elegans, where proximal dendrites of the nociceptor PVD adhere to the axon of the ALA interneuron. This axon-dendrite fasciculation is mediated by a previously uncharacterized adhesive signaling by the ALA membrane signal SAX-7/L1CAM and the PVD receptor SAX-3/Robo but independent of Slit. L1CAM physically interacts with Robo and instructs dendrite adhesion in a Robo-dependent manner. Fasciculation mediated by L1CAM-Robo signaling aligns F-actin dynamics in the dendrite growth cone and facilitates dynamic growth cone behaviors for efficient dendrite guidance. Disruption of PVD dendrite fasciculation impairs nociceptive mechanosensation and rhythmicity in body curvature, suggesting that dendrite fasciculation governs the functions of mechanosensory circuits. Our work elucidates the molecular mechanisms by which adhesive axon-dendrite signaling shapes the construction and function of sensory neuronal circuits
Investigating Effects of Perceived Technology-enhanced Environment on Self-regulated Learning: Beyond P-values
This study examined the effects of a technology-enhanced intervention on the
self-regulation of 262 eighth-grade students, employing information and
communication technology (ICT) and web-based self-assessment tools set against
science learning. The data were analyzed using both maximum likelihood and
Bayesian structural equation modeling to unravel the intricate relationships
between self-regulation, self-efficacy, perceptions of ICT, and self-assessment
tools. Our research findings underscored the direct and indirect impacts of
self-efficacy, perceived ease of use, and perceived use of technology on
self-regulation. The results revealed the predictive power of self-assessment
tools in determining self-regulation outcomes, underlining the potential of
technology-enhanced self-regulated learning environments. The study posited the
necessity to transcend mere technology incorporation and to emphasize the
inclusion of monitoring strategies explicitly designed to augment
self-regulation. Interestingly, self-efficacy appeared to indirectly influence
self-regulation outcomes through perceived the use of technology rather than
direct influence. Analytically, this research indicated that Bayesian
estimation could offer a more comprehensive insight into structural equation
modeling by more accurately assessing our estimates' uncertainty. This research
substantially contributes to comprehending the influence of technology-enhanced
environments on students' self-regulated learning, stressing the importance of
constructing practical tools explicitly designed to cultivate self-regulation
Effect of non-lattice oxygen on ZrO2-based resistive switching memory
ZrO2-based resistive switching memory has attracted much attention according to its possible application in the next-generation nonvolatile memory. The Al/ZrO2/Pt resistive switching memory with bipolar resistive switching behavior is revealed in this work. The thickness of the ZrO2 film is only 20 nm. The device yield improved by the non-lattice oxygen existing in the ZrO2 film deposited at room temperature is firstly proposed. The stable resistive switching behavior and the long retention time with a large current ratio are also observed. Furthermore, it is demonstrated that the resistive switching mechanism agrees with the formation and rupture of a conductive filament in the ZrO2 film. In addition, the Al/ZrO2/Pt resistive switching memory is also possible for application in flexible electronic equipment because it can be fully fabricated at room temperature
Recruitment of Rad51 and Rad52 to Short Telomeres Triggers a Mec1-Mediated Hypersensitivity to Double-Stranded DNA Breaks in Senescent Budding Yeast
Telomere maintenance is required for chromosome stability, and telomeres are typically replicated by the action of telomerase. In both mammalian tumor and yeast cells that lack telomerase, telomeres are maintained by an alternative recombination mechanism. Here we demonstrated that the budding yeast Saccharomyces cerevisiae type I survivors derived from telomerase-deficient cells were hypersensitive to DNA damaging agents. Assays to track telomere lengths and drug sensitivity of telomerase-deficient cells from spore colonies to survivors suggested a correlation between telomere shortening and bleomycin sensitivity. Our genetic studies demonstrated that this sensitivity depends on Mec1, which signals checkpoint activation, leading to prolonged cell-cycle arrest in senescent budding yeasts. Moreover, we also observed that when cells equipped with short telomeres, recruitments of homologous recombination proteins, Rad51 and Rad52, were reduced at an HO-endonuclease-catalyzed double-strand break (DSB), while their associations were increased at chromosome ends. These results suggested that the sensitive phenotype may be attributed to the sequestration of repair proteins to compromised telomeres, thus limiting the repair capacity at bona fide DSB sites
Adhesive L1CAM-Robo Signaling Aligns Growth Cone F-Actin Dynamics to Promote Axon-Dendrite Fasciculation in C. elegans
Neurite fasciculation through contact-dependent signaling is important for the wiring and function of the neuronal circuits. Here, we describe a type of axon-dendrite fasciculation in C. elegans, where proximal dendrites of the nociceptor PVD adhere to the axon of the ALA interneuron. This axon-dendrite fasciculation is mediated by a previously uncharacterized adhesive signaling by the ALA membrane signal SAX-7/L1CAM and the PVD receptor SAX-3/Robo but independent of Slit. L1CAM physically interacts with Robo and instructs dendrite adhesion in a Robo-dependent manner. Fasciculation mediated by L1CAM-Robo signaling aligns F-actin dynamics in the dendrite growth cone and facilitates dynamic growth cone behaviors for efficient dendrite guidance. Disruption of PVD dendrite fasciculation impairs nociceptive mechanosensation and rhythmicity in body curvature, suggesting that dendrite fasciculation governs the functions of mechanosensory circuits. Our work elucidates the molecular mechanisms by which adhesive axon-dendrite signaling shapes the construction and function of sensory neuronal circuits
Lasing on nonlinear localized waves in curved geometry
The use of geometrical constraints opens many new perspectives in photonics
and in fundamental studies of nonlinear waves. By implementing surface
structures in vertical cavity surface emitting lasers as manifolds for curved
space, we experimentally study the impacts of geometrical constraints on
nonlinear wave localization. We observe localized waves pinned to the maximal
curvature in an elliptical-ring, and confirm the reduction in the localization
length of waves by measuring near and far field patterns, as well as the
corresponding dispersion relation. Theoretically, analyses based on a
dissipative model with a parabola curve give good agreement remarkably to
experimental measurement on the transition from delocalized to localized waves.
The introduction of curved geometry allows to control and design lasing modes
in the nonlinear regime.Comment: 6 pages, 6 figure
The in Vivo Deleterious Effects of Ethanol
Oxidative stress, which is defined as an imbalance between pro-oxidants and antioxidants, has been demonstrated to mediate the pathogenesis of ethanol-induced injury. Senescence-accelerated mice prone P8 (SAMP8) is considered an excellent model for rode
- …