15,810 research outputs found

    Dynamic Resource Allocation in Cognitive Radio Networks: A Convex Optimization Perspective

    Full text link
    This article provides an overview of the state-of-art results on communication resource allocation over space, time, and frequency for emerging cognitive radio (CR) wireless networks. Focusing on the interference-power/interference-temperature (IT) constraint approach for CRs to protect primary radio transmissions, many new and challenging problems regarding the design of CR systems are formulated, and some of the corresponding solutions are shown to be obtainable by restructuring some classic results known for traditional (non-CR) wireless networks. It is demonstrated that convex optimization plays an essential role in solving these problems, in a both rigorous and efficient way. Promising research directions on interference management for CR and other related multiuser communication systems are discussed.Comment: to appear in IEEE Signal Processing Magazine, special issue on convex optimization for signal processin

    The Spectrum of a Binding System for a Heavy Quark with an Anti-Sbottom or for a Sbottom and Anti-Sbottom Pair

    Full text link
    Since long-lived light bottom squark (sbottom) and its anti-particle with a mass close to the bottom quark have not been excluded by experiments so far, we consider such a sbottom to combine with its anti-particle to form a color singlet meson-like bound state or to combine with a common anti-quark to form a fermion-like one, or accordingly their anti-particles to form an anti-particle bound system. Namely we calculate the low-lying spectrum of the systems based on QCD inspired potential model. To be as relativistic as possible, we start with the framework of Bethe-Salpeter (BS) equation even for non-relativistic binding systems. Finally, we obtain the requested spectrum by constructing general forms of the BS wave functions and solving the BS equations under instantaneous approximation.Comment: 13 pages, 1 figur

    Optimal Beamforming for Two-Way Multi-Antenna Relay Channel with Analogue Network Coding

    Full text link
    This paper studies the wireless two-way relay channel (TWRC), where two source nodes, S1 and S2, exchange information through an assisting relay node, R. It is assumed that R receives the sum signal from S1 and S2 in one time-slot, and then amplifies and forwards the received signal to both S1 and S2 in the next time-slot. By applying the principle of analogue network (ANC), each of S1 and S2 cancels the so-called "self-interference" in the received signal from R and then decodes the desired message. Assuming that S1 and S2 are each equipped with a single antenna and R with multi-antennas, this paper analyzes the capacity region of an ANC-based TWRC with linear processing (beamforming) at R. The capacity region contains all the achievable bidirectional rate-pairs of S1 and S2 under the given transmit power constraints at S1, S2, and R. We present the optimal relay beamforming structure as well as an efficient algorithm to compute the optimal beamforming matrix based on convex optimization techniques. Low-complexity suboptimal relay beamforming schemes are also presented, and their achievable rates are compared against the capacity with the optimal scheme.Comment: to appear in JSAC, 200

    New Perspectives on Axion Misalignment Mechanism

    Full text link
    A zero initial velocity of the axion field is assumed in the conventional misalignment mechanism. We propose an alternative scenario where the initial velocity is nonzero, which may arise from an explicit breaking of the PQ symmetry in the early Universe. We demonstrate that, depending on the specifics about the initial velocity and the time order of the PQ symmetry breaking vs. inflation, this new scenario can alter the conventional prediction for the axion relic abundance in different, potentially significant ways. As a result, new viable parameter regions for axion dark matter may open up.Comment: 7 pages, 7 figure
    • …
    corecore