12,035 research outputs found

    Dynamics on the Way to Forming Glass: Bubbles in Space-time

    Full text link
    We review a theoretical perspective of the dynamics of glass forming liquids and the glass transition. It is a perspective we have developed with our collaborators during this decade. It is based upon the structure of trajectory space. This structure emerges from spatial correlations of dynamics that appear in disordered systems as they approach non-ergodic or jammed states. It is characterized in terms of dynamical heterogeneity, facilitation and excitation lines. These features are associated with a newly discovered class of non-equilibrium phase transitions. Equilibrium properties have little if anything to do with it. The broken symmetries of these transitions are obscure or absent in spatial structures, but they are vivid in space-time (i.e., trajectory space). In our view, the glass transition is an example of this class of transitions. The basic ideas and principles we review were originally developed through the analysis of idealized and abstract models. Nevertheless, the central ideas are easily illustrated with reference to molecular dynamics of more realistic atomistic models, and we use that illustrative approach here.Comment: 21 pages, 8 figures. Submitted to Annu. Rev. Phys. Che

    Evaluating the efficacy of primary treatment for graves' disease complicated by thyrotoxic periodic paralysis

    Get PDF
    Objective. Thyrotoxic periodic paralysis (TPP) is a potentially life-threatening complication of Graves' disease (GD). The present study compared the long-term efficacy of antithyroid drugs (ATD), radioactive iodine (RAI), and surgery in GD/TPP. Methods. Sixteen patients with GD/TPP were followed over a 14-year period. ATD was generally prescribed upfront for 12-18 months before RAI or surgery was considered. Outcomes such as thyrotoxic or TPP relapses were compared between the three modalities. Results. Eight (50.0%) patients had ATD alone, 4 (25.0%) had RAI, and 4 (25.0%) had surgery as primary treatment. Despite being able to withdraw ATD in all 8 patients for 37.5 (22-247) months, all subsequently developed thyrotoxic relapses and 4 (50.0%) had ≥1 TPP relapses. Of the four patients who had RAI, two (50%) developed thyrotoxic relapse after 12 and 29 months, respectively, and two (50.0%) became hypothyroid. The median required RAI dose to render hypothyroidism was 550 (350-700) MBq. Of the 4 patients who underwent surgery, none developed relapses but all became hypothyroid. Conclusion. To minimize future relapses, more definitive primary treatment such as RAI or surgery is preferred over ATD alone. If RAI is chosen over surgery, a higher dose (>550 MBq) is recommended.published_or_final_versio

    The effect of acute exercise on cognitive performance in children with and without ADHD

    Get PDF
    AbstractBackgroundAttention deficit hyperactivity disorder (ADHD) is a common childhood disorder that affects approximately 11% of children in the United States. Research supports that a single session of exercise benefits cognitive performance by children, and a limited number of studies have demonstrated that these effects can also be realized by children with ADHD. The purpose of this study was to examine the effect of acute exercise on cognitive performance by children with and without ADHD.MethodsChildren with and without ADHD were asked to perform cognitive tasks on 2 days following treatment conditions that were assigned in a random, counterbalanced order. The treatment conditions consisted of a 30-min control condition on 1 day and a moderate intensity exercise condition on the other day.ResultsExercise significantly benefited performance on all three conditions of the Stroop Task, but did not significantly affect performance on the Tower of London or the Trail Making Test.Conclusionchildren with and without ADHD realize benefits in speed of processing and inhibitory control in response to a session of acute exercise, but do not experience benefits in planning or set shifting

    A metabolite-derived protein modification integrates glycolysis with KEAP1-NRF2 signalling.

    Get PDF
    Mechanisms that integrate the metabolic state of a cell with regulatory pathways are necessary to maintain cellular homeostasis. Endogenous, intrinsically reactive metabolites can form functional, covalent modifications on proteins without the aid of enzymes1,2, and regulate cellular functions such as metabolism3-5 and transcription6. An important 'sensor' protein that captures specific metabolic information and transforms it into an appropriate response is KEAP1, which contains reactive cysteine residues that collectively act as an electrophile sensor tuned to respond to reactive species resulting from endogenous and xenobiotic molecules. Covalent modification of KEAP1 results in reduced ubiquitination and the accumulation of NRF27,8, which then initiates the transcription of cytoprotective genes at antioxidant-response element loci. Here we identify a small-molecule inhibitor of the glycolytic enzyme PGK1, and reveal a direct link between glycolysis and NRF2 signalling. Inhibition of PGK1 results in accumulation of the reactive metabolite methylglyoxal, which selectively modifies KEAP1 to form a methylimidazole crosslink between proximal cysteine and arginine residues (MICA). This posttranslational modification results in the dimerization of KEAP1, the accumulation of NRF2 and activation of the NRF2 transcriptional program. These results demonstrate the existence of direct inter-pathway communication between glycolysis and the KEAP1-NRF2 transcriptional axis, provide insight into the metabolic regulation of the cellular stress response, and suggest a therapeutic strategy for controlling the cytoprotective antioxidant response in several human diseases

    Evaluation of Phage Display Discovered Peptides as Ligands for Prostate-Specific Membrane Antigen (PSMA)

    Get PDF
    The aim of this study was to identify potential ligands of PSMA suitable for further development as novel PSMA-targeted peptides using phage display technology. The human PSMA protein was immobilized as a target followed by incubation with a 15-mer phage display random peptide library. After one round of prescreening and two rounds of screening, high-stringency screening at the third round of panning was performed to identify the highest affinity binders. Phages which had a specific binding activity to PSMA in human prostate cancer cells were isolated and the DNA corresponding to the 15-mers were sequenced to provide three consensus sequences: GDHSPFT, SHFSVGS and EVPRLSLLAVFL as well as other sequences that did not display consensus. Two of the peptide sequences deduced from DNA sequencing of binding phages, SHSFSVGSGDHSPFT and GRFLTGGTGRLLRIS were labeled with 5-carboxyfluorescein and shown to bind and co-internalize with PSMA on human prostate cancer cells by fluorescence microscopy. The high stringency requirements yielded peptides with affinities KD∼1 μM or greater which are suitable starting points for affinity maturation. While these values were less than anticipated, the high stringency did yield peptide sequences that apparently bound to different surfaces on PSMA. These peptide sequences could be the basis for further development of peptides for prostate cancer tumor imaging and therapy. © 2013 Shen et al

    30 inch Roll-Based Production of High-Quality Graphene Films for Flexible Transparent Electrodes

    Full text link
    We report that 30-inch scale multiple roll-to-roll transfer and wet chemical doping considerably enhance the electrical properties of the graphene films grown on roll-type Cu substrates by chemical vapor deposition. The resulting graphene films shows a sheet resistance as low as ~30 Ohm/sq at ~90 % transparency which is superior to commercial transparent electrodes such as indium tin oxides (ITO). The monolayer of graphene shows sheet resistances as low as ~125 Ohm/sq with 97.4% optical transmittance and half-integer quantum Hall effect, indicating the high-quality of these graphene films. As a practical application, we also fabricated a touch screen panel device based on the graphene transparent electrodes, showing extraordinary mechanical and electrical performances

    Biasogram: visualization of confounding technical bias in gene expression data.

    Get PDF
    Gene expression profiles of clinical cohorts can be used to identify genes that are correlated with a clinical variable of interest such as patient outcome or response to a particular drug. However, expression measurements are susceptible to technical bias caused by variation in extraneous factors such as RNA quality and array hybridization conditions. If such technical bias is correlated with the clinical variable of interest, the likelihood of identifying false positive genes is increased. Here we describe a method to visualize an expression matrix as a projection of all genes onto a plane defined by a clinical variable and a technical nuisance variable. The resulting plot indicates the extent to which each gene is correlated with the clinical variable or the technical variable. We demonstrate this method by applying it to three clinical trial microarray data sets, one of which identified genes that may have been driven by a confounding technical variable. This approach can be used as a quality control step to identify data sets that are likely to yield false positive results

    A compact statistical model of the song syntax in Bengalese finch

    Get PDF
    Songs of many songbird species consist of variable sequences of a finite number of syllables. A common approach for characterizing the syntax of these complex syllable sequences is to use transition probabilities between the syllables. This is equivalent to the Markov model, in which each syllable is associated with one state, and the transition probabilities between the states do not depend on the state transition history. Here we analyze the song syntax in a Bengalese finch. We show that the Markov model fails to capture the statistical properties of the syllable sequences. Instead, a state transition model that accurately describes the statistics of the syllable sequences includes adaptation of the self-transition probabilities when states are repeatedly revisited, and allows associations of more than one state to the same syllable. Such a model does not increase the model complexity significantly. Mathematically, the model is a partially observable Markov model with adaptation (POMMA). The success of the POMMA supports the branching chain network hypothesis of how syntax is controlled within the premotor song nucleus HVC, and suggests that adaptation and many-to-one mapping from neural substrates to syllables are important features of the neural control of complex song syntax

    A prospective trial of tacrolimus (FK 506) in clinical heart transplantation: Intermediate-term results

    Get PDF
    Between January 1, 1989, and December 31, 1994, we have treated 122 primary heart recipients with FK 506 (group I) and 121 with cyclosporine (group II). Fifty patients in the cyclosporine (CyA) group received no lympholytic induction (CyA alone) and 71 others received lympholytic induction with either rabbit antithymocyte globulin or OKT3 (CyA+LI). The mean follow-up was longer in the FK 506 group than in the CyA groups (3.2 ± 1.3 vs 2.3 ± 1.8 years; p < 0.01). Patient survival did not differ on the basis of the type of immunosuppression used. At 3 months after transplantation, the freedom from rejection in the FK 506 group was higher than that of the CyA-alone group (47% vs 22%, p < 0.01) but similar to that of the CyA+LI group (47% vs 53%). The linearized rejection rate (episodes/100 patient-days) of the FK 506 group (0.09 episodes) was lower (p < 0.05) than that of the CyA-alone group (0.26) and the CyA+LI group (0.13). The requirement for pulsed steroids to treat rejection was less in common in the FK 506 group than in either CyA group. Eighteen patients in the CyA group had refractory rejections; all resolved with FK 506 rescue. Two patients in the FK 506 group had refractory rejection that resolved with total lymphoid irradiation (n = 1) and methotrexate therapy (n = 1). Patients receiving FK 506 had a lower risk of hypertension and required a lower dose of steroids. Although the mean serum creatinine concentration at 1 year was higher in the FK 506 group, this difference disappeared after 2 years. No patients required discontinuation of FK 506 because of its side effects. Our intermediate-term results indicate that FK 506 compares favorably with CyA as a primary immunosuppressant in heart transplantation

    Altered splicing of the BIN1 muscle-specific exon in humans and dogs with highly progressive centronuclear myopathy

    Get PDF
    Amphiphysin 2, encoded by BIN1, is a key factor for membrane sensing and remodelling in different cell types. Homozygous BIN1 mutations in ubiquitously expressed exons are associated with autosomal recessive centronuclear myopathy (CNM), a mildly progressive muscle disorder typically showing abnormal nuclear centralization on biopsies. In addition, misregulation of BIN1 splicing partially accounts for the muscle defects in myotonic dystrophy (DM). However, the muscle-specific function of amphiphysin 2 and its pathogenicity in both muscle disorders are not well understood. In this study we identified and characterized the first mutation affecting the splicing of the muscle-specific BIN1 exon 11 in a consanguineous family with rapidly progressive and ultimately fatal centronuclear myopathy. In parallel, we discovered a mutation in the same BIN1 exon 11 acceptor splice site as the genetic cause of the canine Inherited Myopathy of Great Danes (IMGD). Analysis of RNA from patient muscle demonstrated complete skipping of exon 11 and BIN1 constructs without exon 11 were unable to promote membrane tubulation in differentiated myotubes. Comparative immunofluorescence and ultrastructural analyses of patient and canine biopsies revealed common structural defects, emphasizing the importance of amphiphysin 2 in membrane remodelling and maintenance of the skeletal muscle triad. Our data demonstrate that the alteration of the muscle-specific function of amphiphysin 2 is a common pathomechanism for centronuclear myopathy, myotonic dystrophy, and IMGD. The IMGD dog is the first faithful model for human BIN1-related CNM and represents a mammalian model available for preclinical trials of potential therapies
    corecore