12 research outputs found

    URNet : User-Resizable Residual Networks with Conditional Gating Module

    Full text link
    Convolutional Neural Networks are widely used to process spatial scenes, but their computational cost is fixed and depends on the structure of the network used. There are methods to reduce the cost by compressing networks or varying its computational path dynamically according to the input image. However, since a user can not control the size of the learned model, it is difficult to respond dynamically if the amount of service requests suddenly increases. We propose User-Resizable Residual Networks (URNet), which allows users to adjust the scale of the network as needed during evaluation. URNet includes Conditional Gating Module (CGM) that determines the use of each residual block according to the input image and the desired scale. CGM is trained in a supervised manner using the newly proposed scale loss and its corresponding training methods. URNet can control the amount of computation according to user's demand without degrading the accuracy significantly. It can also be used as a general compression method by fixing the scale size during training. In the experiments on ImageNet, URNet based on ResNet-101 maintains the accuracy of the baseline even when resizing it to approximately 80% of the original network, and demonstrates only about 1% accuracy degradation when using about 65% of the computation.Comment: 12 page

    Improving Small Footprint Few-shot Keyword Spotting with Supervision on Auxiliary Data

    Full text link
    Few-shot keyword spotting (FS-KWS) models usually require large-scale annotated datasets to generalize to unseen target keywords. However, existing KWS datasets are limited in scale and gathering keyword-like labeled data is costly undertaking. To mitigate this issue, we propose a framework that uses easily collectible, unlabeled reading speech data as an auxiliary source. Self-supervised learning has been widely adopted for learning representations from unlabeled data; however, it is known to be suitable for large models with enough capacity and is not practical for training a small footprint FS-KWS model. Instead, we automatically annotate and filter the data to construct a keyword-like dataset, LibriWord, enabling supervision on auxiliary data. We then adopt multi-task learning that helps the model to enhance the representation power from out-of-domain auxiliary data. Our method notably improves the performance over competitive methods in the FS-KWS benchmark.Comment: Interspeech 202

    PQK: Model Compression via Pruning, Quantization, and Knowledge Distillation

    No full text
    As edge devices become prevalent, deploying Deep Neural Networks (DNN) on edge devices has become a critical issue. However, DNN requires a high computational resource which is rarely available for edge devices. To handle this, we propose a novel model compression method for the devices with limited computational resources, called PQK consisting of pruning, quantization, and knowledge distillation (KD) processes. Unlike traditional pruning and KD, PQK makes use of unimportant weights pruned in the pruning process to make a teacher network for training a better student network without pre-training the teacher model. PQK has two phases. Phase 1 exploits iterative pruning and quantization-aware training to make a lightweight and power-efficient model. In phase 2, we make a teacher network by adding unimportant weights unused in phase 1 to a pruned network. By using this teacher network, we train the pruned network as a student network. In doing so, we do not need a pre-trained teacher network for the KD framework because the teacher and the student networks coexist within the same network (See Fig. 1). We apply our method to the recognition model and verify the effectiveness of PQK on keyword spotting (KWS) and image recognition.Y

    PROTOTYPE-BASED PERSONALIZED PRUNING

    No full text
    Nowadays, as edge devices such as smartphones become prevalent, there are increasing demands for personalized services. However, traditional personalization methods are not suitable for edge devices because retraining or finetuning is needed with limited personal data. Also, a full model might be too heavy for edge devices with limited resources. Unfortunately, model compression methods which can handle the model complexity issue also require the retraining phase. These multiple training phases generally need huge computational cost during on-device learning which can be a burden to edge devices. In this work, we propose a dynamic personalization method called prototype-based personalized pruning (PPP). PPP considers both ends of personalization and model efficiency. After training a network, PPP can easily prune the network with a prototype representing the characteristics of personal data and it performs well without retraining or finetuning. We verify the usefulness of PPP on a couple of tasks in computer vision and Keyword spotting.Y

    Broadcasted Residual Learning for Efficient Keyword Spotting

    Full text link
    Keyword spotting is an important research field because it plays a key role in device wake-up and user interaction on smart devices. However, it is challenging to minimize errors while operating efficiently in devices with limited resources such as mobile phones. We present a broadcasted residual learning method to achieve high accuracy with small model size and computational load. Our method configures most of the residual functions as 1D temporal convolution while still allows 2D convolution together using a broadcasted-residual connection that expands temporal output to frequency-temporal dimension. This residual mapping enables the network to effectively represent useful audio features with much less computation than conventional convolutional neural networks. We also propose a novel network architecture, Broadcasting-residual network (BC-ResNet), based on broadcasted residual learning and describe how to scale up the model according to the target device's resources. BC-ResNets achieve state-of-the-art 98.0% and 98.7% top-1 accuracy on Google speech command datasets v1 and v2, respectively, and consistently outperform previous approaches, using fewer computations and parameters.Comment: Proceedings of INTERSPEECH 202

    Variational On-the-Fly Personalization

    No full text
    With the development of deep learning (DL) technologies, the demand for DL-based services on personal devices, such as mobile phones, also increases rapidly. In this paper, we propose a novel personalization method, Variational Onthe-Fly Personalization. Compared to the conventional personalization methods that require additional fine-tuning with personal data, the proposed method only requires forwarding a handful of personal data on-the-fly. Assuming even a single personal data can convey the characteristics of a target person, we develop the variational hyper-personalizer to capture the weight distribution of layers that fits the target person. In the testing phase, the hyper-personalizer estimates the model's weights on-the-fly based on personality by forwarding only a small amount of (even a single) personal enrollment data. Hence, the proposed method can perform the personalization without any training software platform and additional cost in the edge device. In experiments, we show our approach can effectively generate reliable personalized models via forwarding (not back-propagating) a handful of samples.N
    corecore