2,101 research outputs found
Building quantum neural networks based on swap test
Artificial neural network, consisting of many neurons in different layers, is
an important method to simulate humain brain. Usually, one neuron has two
operations: one is linear, the other is nonlinear. The linear operation is
inner product and the nonlinear operation is represented by an activation
function. In this work, we introduce a kind of quantum neuron whose inputs and
outputs are quantum states. The inner product and activation operator of the
quantum neurons can be realized by quantum circuits. Based on the quantum
neuron, we propose a model of quantum neural network in which the weights
between neurons are all quantum states. We also construct a quantum circuit to
realize this quantum neural network model. A learning algorithm is proposed
meanwhile. We show the validity of learning algorithm theoretically and
demonstrate the potential of the quantum neural network numerically.Comment: 10 pages, 13 figure
Gas kinematics and star formation in the filamentary molecular cloud G47.06+0.26
We performed a multi-wavelength study toward the filamentary cloud
G47.06+0.26 to investigate the gas kinematics and star formation. We present
the 12CO (J=1-0), 13CO (J=1-0) and C18O (J=1-0) observations of G47.06+0.26
obtained with the Purple Mountain Observation (PMO) 13.7 m radio telescope to
investigate the detailed kinematics of the filament. The 12CO (J=1-0) and 13CO
(J=1-0) emission of G47.06+0.26 appear to show a filamentary structure. The
filament extends about 45 arcmin (58.1 pc) along the east-west direction. The
mean width is about 6.8 pc, as traced by the 13CO (J=1-0) emission. G47.06+0.26
has a linear mass density of about 361.5 Msun/pc. The external pressure (due to
neighboring bubbles and H II regions) may help preventing the filament from
dispersing under the effects of turbulence. From the velocity-field map, we
discern a velocity gradient perpendicular to G47.06+0.26. From the Bolocam
Galactic Plane Survey (BGPS) catalog, we found nine BGPS sources in
G47.06+0.26, that appear to these sources have sufficient mass to form massive
stars. We obtained that the clump formation efficiency (CFE) is about 18% in
the filament. Four infrared bubbles were found to be located in, and adjacent
to, G47.06+0.26. Particularly, infrared bubble N98 shows a cometary structure.
CO molecular gas adjacent to N98 also shows a very intense emission. H II
regions associated with infrared bubbles can inject the energy to surrounding
gas. We calculated the kinetic energy, ionization energy, and thermal energy of
two H II regions in G47.06+0.26. From the GLIMPSE I catalog, we selected some
Class I sources with an age of about 100000 yr, which are clustered along the
filament. The feedback from the H II regions may cause the formation of a new
generation of stars in filament G47.06+0.26.Comment: 10 pages, 11 figures, accepted for publication in A&
- …