83,775 research outputs found
Acyclic orientations on the Sierpinski gasket
We study the number of acyclic orientations on the generalized
two-dimensional Sierpinski gasket at stage with equal to
two and three, and determine the asymptotic behaviors. We also derive upper
bounds for the asymptotic growth constants for and -dimensional
Sierpinski gasket .Comment: 20 pages, 8 figures and 6 table
An integrated theory of language production and comprehension
Currently, production and comprehension are regarded as quite distinct in accounts of language processing. In rejecting this dichotomy, we instead assert that producing and understanding are interwoven, and that this interweaving is what enables people to predict themselves and each other. We start by noting that production and comprehension are forms of action and action perception. We then consider the evidence for interweaving in action, action perception, and joint action, and explain such evidence in terms of prediction. Specifically, we assume that actors construct forward models of their actions before they execute those actions, and that perceivers of others' actions covertly imitate those actions, then construct forward models of those actions. We use these accounts of action, action perception, and joint action to develop accounts of production, comprehension, and interactive language. Importantly, they incorporate well-defined levels of linguistic representation (such as semantics, syntax, and phonology). We show (a) how speakers and comprehenders use covert imitation and forward modeling to make predictions at these levels of representation, (b) how they interweave production and comprehension processes, and (c) how they use these predictions to monitor the upcoming utterances. We show how these accounts explain a range of behavioral and neuroscientific data on language processing and discuss some of the implications of our proposal
The NLO QCD Corrections to Meson Production in Decays
The decay width of to meson is evaluated at the next-to-leading
order(NLO) accuracy in strong interaction. Numerical calculation shows that the
NLO correction to this process is remarkable. The quantum
chromodynamics(QCD)renormalization scale dependence of the results is obviously
depressed, and hence the uncertainties lying in the leading order calculation
are reduced.Comment: 14 pages, 7 figures; references added; expressions and typos ammende
Transonic airfoil analysis and design in nonuniform flow
A nonuniform transonic airfoil code is developed for applications in analysis, inverse design and direct optimization involving an airfoil immersed in propfan slipstream. Problems concerning the numerical stability, convergence, divergence and solution oscillations are discussed. The code is validated by comparing with some known results in incompressible flow. A parametric investigation indicates that the airfoil lift-drag ratio can be increased by decreasing the thickness ratio. A better performance can be achieved if the airfoil is located below the slipstream center. Airfoil characteristics designed by the inverse method and a direct optimization are compared. The airfoil designed with the method of direct optimization exhibits better characteristics and achieves a gain of 22 percent in lift-drag ratio with a reduction of 4 percent in thickness
Calculation of vortex lift effect for cambered wings by the suction analogy
An improved version of Woodward's chord plane aerodynamic panel method for subsonic and supersonic flow is developed for cambered wings exhibiting edge separated vortex flow, including those with leading edge vortex flaps. The exact relation between leading edge thrust and suction force in potential flow is derived. Instead of assuming the rotated suction force to be normal to wing surface at the leading edge, new orientation for the rotated suction force is determined through consideration of the momentum principle. The supersonic suction analogy method is improved by using an effective angle of attack defined through a semi-empirical method. Comparisons of predicted results with available data in subsonic and supersonic flow are presented
VORCAM: A computer program for calculating vortex lift effect of cambered wings by the suction analogy
A user's guide to an improved version of Woodward's chord plane aerodynamic panel computer code is presumed. The guide can be applied to cambered wings exhibiting edge separated flow, including those with leading edge vortex flow at subsonic and supersonic speeds. New orientations for the rotated suction force are employed based on the momentum principal. The supersonic suction analogy method is improved by using an effective angle of attack defined through a semiempirical method
Network attack detection at flow level
In this paper, we propose a new method for detecting unauthorized network
intrusions, based on a traffic flow model and Cisco NetFlow protocol
application. The method developed allows us not only to detect the most common
types of network attack (DDoS and port scanning), but also to make a list of
trespassers' IP-addresses. Therefore, this method can be applied in intrusion
detection systems, and in those systems which lock these IP-addresses
TRANDESNF: A computer program for transonic airfoil design and analysis in nonuniform flow
The use of a transonic airfoil code for analysis, inverse design, and direct optimization of an airfoil immersed in propfan slipstream is described. A summary of the theoretical method, program capabilities, input format, output variables, and program execution are described. Input data of sample test cases and the corresponding output are given
- …