7 research outputs found
Scale-dependent angle of alignment between velocity and magnetic field fluctuations in solar wind turbulence
Under certain conditions, freely decaying magnetohydrodynamic (MHD) turbulence evolves in such a way that velocity and magnetic field fluctuations delta v and delta B approach a state of alignment in which delta v proportional to delta B. This process is called dynamic alignment. Boldyrev has suggested that a similar kind of alignment process occurs as energy cascades from large to small scales through the inertial range in strong incompressible MHD turbulence. In this study, plasma and magnetic field data from the Wind spacecraft, data acquired in the ecliptic plane near 1 AU, are employed to investigate the angle theta(tau) between velocity and magnetic field fluctuations in the solar wind as a function of the time scale tau of the fluctuations and to look for the scaling relation similar to tau(1/4) predicted by Boldyrev. We find that the angle appears to scale like a power law at large inertial range scales, but then deviates from power law behavior at medium to small inertial range scales. We also find that small errors in the velocity vector measurements can lead to large errors in the angle measurements at small time scales. As a result, we cannot rule out the possibility that the observed deviations from power law behavior arise from errors in the velocity measurements. When we fit the data from 2 x 10(3) s to 2 x 10(4) s with a power law of the form proportional to tau(p), our best fit values for p are in the range 0.27-0.36
Synthesis of 3-D coronal-solar wind energetic particle acceleration modules
1. Introduction Acute space radiation hazards pose one of the most serious risks to future human and robotic exploration. Large solar energetic particle (SEP) events are dangerous to astronauts and equipment. The ability to predict when and where large SEPs will occur is necessary in order to mitigate their hazards. The Coronal-Solar Wind Energetic Particle Acceleration (C-SWEPA) modeling effort in the NASA/NSF Space Weather Modeling Collaborative [Schunk, 2014] combines two successful Living With a Star (LWS) (http://lws. gsfc.nasa.gov/) strategic capabilities: the Earth-Moon-Mars Radiation Environment Modules (EMMREM) [Schwadron et al., 2010] that describe energetic particles and their effects, with the Next Generation Model for the Corona and Solar Wind developed by the Predictive Science, Inc. (PSI) group. The goal of the C-SWEPA effort is to develop a coupled model that describes the conditions of the corona, solar wind, coronal mass ejections (CMEs) and associated shocks, particle acceleration, and propagation via physics-based modules. Assessing the threat of SEPs is a difficult problem. The largest SEPs typically arise in conjunction with X class flares and very fast (\u3e1000 km/s) CMEs. These events are usually associated with complex sunspot groups (also known as active regions) that harbor strong, stressed magnetic fields. Highly energetic protons generated in these events travel near the speed of light and can arrive at Earth minutes after the eruptive event. The generation of these particles is, in turn, believed to be primarily associated with the shock wave formed very low in the corona by the passage of the CME (injection of particles from the flare site may also play a role). Whether these particles actually reach Earth (or any other point) depends on their transport in the interplanetary magnetic field and their magnetic connection to the shock
Numerical simulations of buoyancy instabilities in galaxy cluster plasmas with cosmic rays and anisotropic thermal conduction
In clusters of galaxies, the specific entropy of intracluster plasma increases outward. Nevertheless, a number of recent studies have shown that the intracluster medium is subject to buoyancy instabilities due to the effects of cosmic rays and anisotropic thermal conduction. In this paper we present a new numerical algorithm for simulating such instabilities. This numerical method treats the cosmic rays as a fluid, accounts for the diffusion of heat and cosmic rays along magnetic field lines, and enforces the condition that the temperature and cosmic-ray pressure remain positive. We carry out several tests to ensure the accuracy of the code, including the detailed matching of analytic results for the eigenfunctions and growth rates of linear buoyancy stabilities. This numerical scheme will be useful for simulating convection driven by cosmic-ray buoyancy in galaxy cluster plasmas and may also be useful for other applications, including fusion plasmas, the interstellar medium, and supernova remnants
An investigation of the pad/disc dynamic centre of pressure using a 12 piston opposed caliper
Pressure-sensitive film embedded into the body of a pad friction compound is a unique technique used to measure the dynamic center of pressure at the pad/disc interface during a normal braking operation. This paper uses of a modified 12 piston opposed caliper where the initial center of pressure may be varied both along the pad and radially. Results show a very definite movement of the center of pressure towards the center of the pad as the brake pressure is increased. In addition it is seen that a leading center of pressure (CoP) will result in noise whereas a trailing CoP gives a quiet brake. Equally a CoP towards the inner edge of the pad increases noise propensity whereas towards the outer edge a quiet brake. The results also show little influence on the CoP with disc speed
Perpendicular proton heating due to energy cascade of fast magnetosonic waves in the solar corona
Observational data and theoretical models suggest that the wave spectrum in the solar wind and corona may contain a fast magnetosonic mode component. This paper presents two-dimensional hybrid simulations of the energy cascade among the fast waves in the vicinity of the proton inertial scale. The initial spectrum consists of modes propagating in the positive direction, defined by the mean magnetic field, and is allowed to evolve freely in time. The plasma beta is set to low values typical of the solar corona. The cascade proceeds from lower to higher wavenumbers and mostly in the direction across the magnetic field. The highly oblique fast waves are strongly dissipated on the protons. The resulting proton heating is preferentially perpendicular to the magnetic field. If the wave intensity is constrained by the observed density spectra in the corona, the heating is fast enough to generate the solar wind
Coronal faraday rotation fluctuations and a wave/turbulence-driven model of the solar wind
Some recent models for coronal heating and the origin of the solar wind postulate that the source of energy and momentum consists of Alfven waves of solar origin dissipating via MHD turbulence. We use one of these models to predict the level of Faraday rotation fluctuations (FRFs) that should be imposed on radio signals passing through the corona. This model has the virtue of specifying the correlation length of the turbulence, knowledge of which is essential for calculating the FRFs; previous comparisons of observed FRFs with models suffered from the fact that the correlation length had to be guessed. We compare the predictions with measurements of FRFs obtained by the Helios radio experiment during occultations in 1975 through 1977, close to solar minimum. We show that only a small fraction of the FRFs are produced by density fluctuations; the bulk of the FRFs must be produced by coronal magnetic field fluctuations. The observed FRFs have periods of hours, suggesting that they are related to Alfven waves which are observed in situ by spacecraft throughout the solar wind; other evidence also suggests that the FRFs are due to coronal Alfven waves. We choose a model field line in an equatorial streamer which has background electron concentrations that match those inferred from the Helios occultation data. The predicted FRFs are found to agree very well with the Helios data. If the FRFs are in fact produced by Alfven waves with the assumed correlation length, our analysis leads us to conclude that wave-turbulence models should continue to be pursued with vigor. But since we cannot prove that the FRFs are produced by Alfven waves, we state the more conservative conclusion, still subject to the correctness of the assumed correlation length, that the corona contains long-period magnetic fluctuations with sufficient energy to heat the corona and drive the solar wind
Resonant interactions between protons and oblique Alfven/ion-cyclotron waves in the solar corona and solar flares
We consider interactions between protons and Alfven/ion-cyclotron (A/IC) waves in collisionless low-beta plasmas in which the proton distribution function f is strongly modified by wave pitch-angle scattering. If the angle theta between the wave vector and background magnetic field is zero for all the waves, then strong scattering causes f to become approximately constant on surfaces of constant eta, where eta similar or equal to nu(2)(perpendicular to) + 1.5 nu(2/3)(A) vertical bar nu(parallel to)vertical bar(4/3). Here, nu(perpendicular to) and nu(parallel to) are the velocity components perpendicular and parallel to the background magnetic field, and nu(A) is the Alfven speed. If f = f(eta), then A/IC waves with theta = 0 are neither damped nor amplified by resonant interactions with protons. In this paper, we argue that if some mechanism generates high-frequency A/IC waves with a range of. values, then wave-particle interactions initially cause the proton distribution function to become so anisotropic that the plasma becomes unstable to the growth of waves with theta = 0. The resulting amplification of theta = 0 waves leads to an angular distribution of A/IC waves that is sharply peaked around. = 0 at the large wavenumbers at which A/IC waves resonate with protons. Scattering by this angular distribution of A/IC waves subsequently causes f to become approximately constant along surfaces of constant., which in turn causes oblique A/IC waves to be damped by protons. We calculate the proton and electron contributions to the damping rate analytically, assuming Maxwellian electrons and f = f(eta). Because the plasma does not relax to a state in which proton damping of oblique A/IC waves ceases, oblique A/IC waves can be significantly more effective at heating protons than A/IC waves with theta = 0