44 research outputs found

    Using gradient boosting regression to improve ambient solar wind model predictions

    Get PDF
    Studying the ambient solar wind, a continuous pressure‐driven plasma flow emanating from our Sun, is an important component of space weather research. The ambient solar wind flows in interplanetary space determine how solar storms evolve through the heliosphere before reaching Earth, and especially during solar minimum are themselves a driver of activity in the Earth’s magnetic field. Accurately forecasting the ambient solar wind flow is therefore imperative to space weather awareness. Here we present a machine learning approach in which solutions from magnetic models of the solar corona are used to output the solar wind conditions near the Earth. The results are compared to observations and existing models in a comprehensive validation analysis, and the new model outperforms existing models in almost all measures. In addition, this approach offers a new perspective to discuss the role of different input data to ambient solar wind modeling, and what this tells us about the underlying physical processes. The final model discussed here represents an extremely fast, well‐validated and open‐source approach to the forecasting of ambient solar wind at Earth

    Real-Time Electrical Load Emulator Using Optimal Feedback Control Technique

    No full text

    On the propagation of uncertainties in radiation belt simulations

    Get PDF
    We present the first study of the uncertainties associated with radiation belt simulations, performed in the standard quasi-linear diffusion framework.

    Lamé Mode MEMS Resonators

    No full text
    corecore