33 research outputs found
Factors affecting stillbirth: prospective study
Background: Stillbirth is defined by WHO as the birth of a baby with a birth weight of 500 gm or more, 22 or more completed weeks of gestation or a body length of 25 cm or more, who died before or during labour and birth.Methods: This was prospective observational study of factors affecting stillbirth was conducted in tertiary hospital for a period of 1 year from 1st June 2014 to 31st May 2015. During the study period, 200 parturient of gestational age 28 weeks or more and fetal weight 1000 gm or more with or without medical disorders were included.Results: The total number of births during study period was 11,951. Stillbirth rate in the present study was 16.73 per 1000 births. Most of stillbirths were seen in the antepartum period (76%) when compared to intrapartum period (24%). Maximum stillbirths occurred in gestational age of 36 weeks and above (52%) and fetal weight between 2001-2500 gm (27.50%). Patients with inadequate antenatal care, less than three visits had 86% stillbirths.Conclusions: Proper antenatal care, prompt referral services and availability of emergency obstetric care will provide a pivotal role for reduction of stillbirths
Cardiac prehabilitation, rehabilitation and education in first-time atrial fibrillation (AF) ablation (CREED AF):Study protocol for a randomised controlled trial
Background: Atrial fibrillation (AF) is associated with significant morbidity/mortality. AF-ablation is an increasingly used treatment. Currently, first-time AF-ablation success is 40–80% at 1-year, depending on individual factors. There is growing evidence for improved outcomes through management of AF risk-factors/comorbidities via patient education/exercise-rehabilitation. There are no studies assessing combined prehabilitation/rehabilitation in this cohort. The aim of this randomised controlled trial is to assess efficacy of comprehensive prehabilitation/ rehabilitation and combining supervised exercise-training with AF risk-factor modification/ education compared with standard care in people undergoing first-time AF ablation. Methods: This single-centre pragmatic randomised controlled trial will recruit 106 adults with paroxysmal/persistent AF listed for first-time AF-ablation. Participants will be randomised 1:1 to cardiac prehabilitation/rehabilitation/education (CREED AF) intervention or standard care. Both groups will undergo AF-ablation at 8-weeks post-randomisation as per usual care. The CREED AF intervention will involve 6-weeks of prehabilitation (before AF-ablation) followed by 6-weeks rehabilitation (after AF-ablation) consisting of risk factor education/modification and supervised exercise training. Standard care will include a single 30-minute session of risk-factor education. Outcomes will be measured at baseline, 10-weeks and 12-months post AF-ablation, by researchers blinded to treatment allocation. The primary outcome is cardiorespiratory-fitness (peak oxygen uptake, VO 2peak) assessed using cardiopulmonary exercise testing (CPET) at 10-weeks post-ablation. Secondary outcomes include health-related quality of life, AF recurrence/burden assessed by 7-day Holter-monitor, requirement for repeat AF-ablation, study defined major adverse cardiovascular events, and cost-effectiveness (incremental cost per quality-adjusted life year (QALY)). Conclusions: This study will assess clinical-efficacy/cost-effectiveness of comprehensive prehabilitation/ rehabilitation/patient-education for people undergoing first time AF-ablation. Results will inform clinical care and design of future multi-centre clinical trials.</p
Exploration of Anti-HIV Phytocompounds against SARS-CoV-2 Main Protease: Structure-Based Screening, Molecular Simulation, ADME Analysis and Conceptual DFT Studies
The ever-expanding pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has gained attention as COVID-19 and caused an emergency in public health to an unmatched level to date. However, the treatments used are the only options; currently, no effective and licensed medications are available to combat disease transmission, necessitating further research. In the present study, an in silico-based virtual screening of anti-HIV bioactive compounds from medicinal plants was carried out through molecular docking against the main protease (Mpro) (PDB: 6LU7) of SARS-CoV-2, which is a key enzyme responsible for virus replication. A total of 16 anti-HIV compounds were found to have a binding affinity greater than −8.9 kcal/mol out of 150 compounds screened. Pseudohypericin had a high affinity with the energy of −10.2 kcal/mol, demonstrating amino acid residual interactions with LEU141, GLU166, ARG188, and GLN192, followed by Hypericin (−10.1 kcal/mol). Moreover, the ADME (Absorption, Distribution, Metabolism and Excretion) analysis of Pseudohypericin and Hypericin recorded a low bioavailability (BA) score of 0.17 and violated Lipinski’s rule of drug-likeness. The docking and molecular simulations indicated that the quinone compound, Pseudohypericin, could be tested in vitro and in vivo as potent molecules against COVID-19 disease prior to clinical trials.This was also supported by the theoretical and computational studies conducted. The global and local descriptors, which are the underpinnings of Conceptual Density FunctionalTheory (CDFT) have beenpredicted through successful model chemistry, hoping that they could be of help in the comprehension of the chemical reactivity properties of the molecular systems considered in this study.Fil: Murali, Mahadevamurthy. University Of Mysore; IndiaFil: Gowtham, Hittanahallikoppal Gajendramurthy. Nrupathunga University; IndiaFil: Shilpa, Natarajamurthy. University Of Mysore; IndiaFil: Krishnappa, Hemanth Kumar Naguvanahalli. University Of Mysore; IndiaFil: Ledesma, Ana Estela. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet Noa Sur. Centro de Investigación en BiofÃsica Aplicada y Alimentos. - Universidad Nacional de Santiago del Estero. Centro de Investigación en BiofÃsica Aplicada y Alimentos; ArgentinaFil: Jain, Anisha S.. University Of Mysore; IndiaFil: Shati, Ali A.. King Khalid University; Arabia SauditaFil: Alfaifi, Mohammad Y.. Vacsera Holding Company; EgiptoFil: Elbehairi, Serag Eldin I.. Jss Academy Of Higher Education And Research; IndiaFil: Achar, Raghu Ram. Pirogov Russian National Research Medical University; RusiaFil: Silina, Ekaterina. Universitat de Les Illesbalears; EspañaFil: Stupin, Victor. Centro de Investigaciónen Materiales Avanzados; MéxicoFil: Ortega Castro, JoaquÃn. Jss Academy Of Higher Education And Research; IndiaFil: Frau, Juan. Universitat de Les Illesbalears; EspañaFil: Flores HolguÃn, Norma. Centro de Investigaciónen Materiales Avanzados; MéxicoFil: Amruthesh, Kestur Nagaraj. University Of Mysore; IndiaFil: Shivamallu, Chandan. Jss Academy Of Higher Education And Research; IndiaFil: Kollur, Shiva Prasad. University Of Mysore; IndiaFil: Glossman Mitnik, Daniel. Centro de Investigaciónen Materiales Avanzados; Méxic
Zinc oxide nanoparticles prepared through microbial mediated synthesis for therapeutic applications: a possible alternative for plants
Zinc oxide nanoparticles (ZnO-NPs) synthesized through biogenic methods have gained significant attention due to their unique properties and potential applications in various biological fields. Unlike chemical and physical approaches that may lead to environmental pollution, biogenic synthesis offers a greener alternative, minimizing hazardous environmental impacts. During biogenic synthesis, metabolites present in the biotic sources (like plants and microbes) serve as bio-reductants and bio-stabilizers. Among the biotic sources, microbes have emerged as a promising option for ZnO-NPs synthesis due to their numerous advantages, such as being environmentally friendly, non-toxic, biodegradable, and biocompatible. Various microbes like bacteria, actinomycetes, fungi, and yeast can be employed to synthesize ZnO-NPs. The synthesis can occur either intracellularly, within the microbial cells, or extracellularly, using proteins, enzymes, and other biomolecules secreted by the microbes. The main key advantage of biogenic synthesis is manipulating the reaction conditions to optimize the preferred shape and size of the ZnO-NPs. This control over the synthesis process allows tailoring the NPs for specific applications in various fields, including medicine, agriculture, environmental remediation, and more. Some potential applications include drug delivery systems, antibacterial agents, bioimaging, biosensors, and nano-fertilizers for improved crop growth. While the green synthesis of ZnO-NPs through microbes offers numerous benefits, it is essential to assess their toxicological effects, a critical aspect that requires thorough investigation to ensure their safe use in various applications. Overall, the presented review highlights the mechanism of biogenic synthesis of ZnO-NPs using microbes and their exploration of potential applications while emphasizing the importance of studying their toxicological effects to ensure a viable and environmentally friendly green strategy
Influence of tobacco chewing on oral health: A hospital-based cross-sectional study in Odisha
Background: Smokeless tobacco use in the Indian subcontinent is a part of many religious and cultural rituals and has gained a degree of social acceptance. The deleterious effects of smokeless tobacco are not as well-known as those produced by smoking. Objectives: The study was carried out to assess the influence of tobacco chewing on the oral health of adult patients attending the dental outpatients department of Khordha district headquarter, Odisha. Methods: A hospital-based cross-sectional study was conducted among 25–64-year-old patients attending the dental outpatient department of Gopabandhu Khordha district headquarter hospital. A total of 512 study participants, who were age and sex matched, were stratified into four age groups such as 25–34 years, 35–44 years, 45–54 years, and 55–64 years old. Oral health status of the participants was assessed using modified WHO Oral Health Assessment Form (2013). Pearson's Chi-square test, binary and multinomial logistic regression was performed to determine the relationship between oral health problems and tobacco chewing. Results: Among the tobacco chewers, 59.8% had gingival bleeding, 40.6% had periodontal pockets, 30.1% had loss of attachment, 48.4% had attrition, and 4.3% had potentially malignant disorders. Compared to the nonchewers, these oral problems were significantly higher among the chewers. Whereas dental caries experience was significantly lower among the chewers (40.6%) compared to the nonchewers (54.7%). Compared to the nonchewers, chewers had 1.71 times increased odds for gingival bleeding, 1.71 times increased odds for periodontal pockets, 2.39 times increased odds for loss of attachment, and 2.49 times increased odds for attrition, which were statistically significant. Conclusion: Hence, the study revealed that tobacco chewing definitely had an influence on oral health, with statistically significant increase in oral health problems in chewers compared to nonchewers. Moreover, loss of attachment and potentially malignant disorders increased significantly with the frequency of tobacco chewing. Periodontal pockets, attrition, and loss of attachment significantly increased with the duration of the chewing habit
Radiation dose dependent positive correlations between plasma and liver metabolites for whole liver irradiation for the combined radiation levels of 0, 10 or 50 Gy.
<p>The Spearman’s correlation coefficient, is defined in Methods.</p><p>Radiation dose dependent positive correlations between plasma and liver metabolites for whole liver irradiation for the combined radiation levels of 0, 10 or 50 Gy.</p
Integrative Metabolic Signatures for Hepatic Radiation Injury
<div><p>Background</p><p>Radiation-induced liver disease (RILD) is a dose-limiting factor in curative radiation therapy (RT) for liver cancers, making early detection of radiation-associated liver injury absolutely essential for medical intervention. A metabolomic approach was used to determine metabolic signatures that could serve as biomarkers for early detection of RILD in mice.</p><p>Methods</p><p>Anesthetized C57BL/6 mice received 0, 10 or 50 Gy Whole Liver Irradiation (WLI) and were contrasted to mice, which received 10 Gy whole body irradiation (WBI). Liver and plasma samples were collected at 24 hours after irradiation. The samples were processed using Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Mass Spectrometry.</p><p>Results</p><p>Twenty four hours after WLI, 407 metabolites were detected in liver samples while 347 metabolites were detected in plasma. Plasma metabolites associated with 50 Gy WLI included several amino acids, purine and pyrimidine metabolites, microbial metabolites, and most prominently bradykinin and 3-indoxyl-sulfate. Liver metabolites associated with 50 Gy WLI included pentose phosphate, purine, and pyrimidine metabolites in liver. Plasma biomarkers in common between WLI and WBI were enriched in microbial metabolites such as 3 indoxyl sulfate, indole-3-lactic acid, phenyllactic acid, pipecolic acid, hippuric acid, and markers of DNA damage such as 2-deoxyuridine. Metabolites associated with tryptophan and indoles may reflect radiation-induced gut microbiome effects. Predominant liver biomarkers in common between WBI and WLI were amino acids, sugars, TCA metabolites (fumarate), fatty acids (lineolate, n-hexadecanoic acid) and DNA damage markers (uridine).</p><p>Conclusions </p><p>We identified a set of metabolomic markers that may prove useful as plasma biomarkers of RILD and WBI. Pathway analysis also suggested that the unique metabolic changes observed after liver irradiation was an integrative response of the intestine, liver and kidney.</p></div
Preparation of a Novel Nanocomposite and Its Antibacterial Effectiveness against <i>Enterococcus faecalis</i>—An In Vitro Evaluation
The interest in the use of green-mediated synthesis of nanoparticles (NPs) is shown to have increased due to their biocompatibility and reduction of overall production costs. The current study aimed to evaluate a novel nanocomposite (NC) prepared by using a combination of zinc oxide, silver and chitosan with lemon extract as a cross-linking agent and assessed its antimicrobial effectiveness against Enterococcus faecalis (E. faecalis). The NPs and NC were prepared individually using a modification of previously established methods. Ananalys is of the physiochemical properties of the NC was conducted using ultraviolet-visible spectroscopy (UV-Vis) (Shimadzu Corporation, Kyoto, Japan). and transmission electron microscopy (TEM) imaging(HR-TEM; JEOL Ltd., Akishima-shi, Japan. The microbial reduction with this novel NC was evaluated by measuring the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) using a tube assay analytic technique. A time-kill assay analysis was conducted to evaluate the kinetic potential against E. faecalis at different time intervals. The novel NC showed a homogenous nanoparticle size under TEM imaging and under UV-Vis established an absorption range of 350–420 nm making it similar to its individual counterparts. The MIC and MIB were measured at 62.5 ± 20 mg/L (p p E. faecalis. Based on the achieved results, it was seen that the novel NC using a combination of silver, zinc oxide and chitosan showed improved antimicrobial action against E. faecalis compared with its individual components under laboratory conditions. A complete eradication of 108 log units of E. faecalis at 250 mg/L occurred after a total of 5 h. These preliminary results establish the use of lemon extract-mediated silver, zinc and chitosan-based NC had an antibacterial effectiveness against E. faecalis similar to the individual counterparts used for its production under laboratory conditions
Marginal and Internal Gap of Metal Copings Fabricated Using Three Types of Resin Patterns with Subtractive and Additive Technology: An In Vitro Comparison
This study analyzes the evidence of the marginal discrepancy and internal adaptation of copings fabricated using three types of resin patterns with subtractive (milling) and additive technology (3D printing), as it is not widely reported. Working casts (n = 15) were scanned and patterns were completed using computer-aided designing (CAD). Resin patterns were fabricated using the designed data and divided into three groups according to the method of fabrication of patterns: subtractive technology–CAD milled polymethyl methacrylate resin (Group-PMMA), additive technology [digital light processing (DLP) technique]–acrylonitrile–butadiene–styrene (ABS) patterns (Group-ABS), and polylactic acid (PLA) patterns (Group-PLA). Resin patterns were casted with Cobalt–Chromium (Co–Cr) alloy (lost wax technique). Internal and marginal gaps of the metal copings were analyzed with the replica technique under optical microscope. The Kruskal–Wallis test was used to compare values among the groups, and post hoc multiple tests confirmed the specific differences within the groups. The median marginal gap was least for CAD milled resin patterns, followed by PLA printed resin patterns and ABS printed resin patterns. There were significant differences between Group-PMMA and Group-PLA and Group-ABS (p = 0.0001). There was no significant difference between Group-PLA and Group-ABS (p = 0.899). The median internal gap was least for metal copings fabricated from Group-PLA, followed by Group-ABS and Group-PMMA. The differences were not statistically significant (p = 0.638) for the internal gap. Full metal Co–Cr copings fabricated from the milled PMMA group had a better marginal fit, followed by the PLA and ABS printed groups. Copings fabricated with the PLA printed group had the best internal fit, though the values were statistically insignificant between the groups
Comparative response of liver and plasma amino acid to irradiation.
<p>The relative levels of most amino acids were significantly reduced in mouse liver at 24 h after WLI. Decreased levels of amino acids in the liver after radiation treatment could reflect an increase in protein synthesis or their utilization for energy. Alternatively, decreased levels may result indirectly from an increase in cell volume due to osmotic stress-related changes following irradiation.</p