3,079 research outputs found

    Characterization of soluble bromide measurements and a case study of BrO observations during ARCTAS

    Get PDF
    A focus of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission was examination of bromine photochemistry in the spring time high latitude troposphere based on aircraft and satellite measurements of bromine oxide (BrO) and related species. The NASA DC-8 aircraft utilized a chemical ionization mass spectrometer (CIMS) to measure BrO and a mist chamber (MC) to measure soluble bromide. We have determined that the MC detection efficiency to molecular bromine (Br2), hypobromous acid (HOBr), bromine oxide (BrO), and hydrogen bromide (HBr) as soluble bromide (Br−) was 0.9±0.1, 1.06+0.30/−0.35, 0.4±0.1, and 0.95±0.1, respectively. These efficiency factors were used to estimate soluble bromide levels along the DC-8 flight track of 17 April 2008 from photochemical calculations constrained to in situ BrO measured by CIMS. During this flight, the highest levels of soluble bromide and BrO were observed and atmospheric conditions were ideal for the space-borne observation of BrO. The good agreement (R2 = 0.76; slope = 0.95; intercept = −3.4 pmol mol−1) between modeled and observed soluble bromide, when BrO was above detection limit (\u3e2 pmol mol−1) under unpolluted conditions (NOmol−1), indicates that the CIMS BrO measurements were consistent with the MC soluble bromide and that a well characterized MC can be used to derive mixing ratios of some reactive bromine compounds. Tropospheric BrO vertical column densities (BrOVCD) derived from CIMS BrO observations compare well with BrOTROPVCD from OMI on 17 April 2008

    Casimir Force between a Dielectric Sphere and a Wall: A Model for Amplification of Vacuum Fluctuations

    Get PDF
    The interaction between a polarizable particle and a reflecting wall is examined. A macroscopic approach is adopted in which the averaged force is computed from the Maxwell stress tensor. The particular case of a perfectly reflecting wall and a sphere with a dielectric function given by the Drude model is examined in detail. It is found that the force can be expressed as the sum of a monotonically decaying function of position and of an oscillatory piece. At large separations, the oscillatory piece is the dominant contribution, and is much larger than the Casimir-Polder interaction that arises in the limit that the sphere is a perfect conductor. It is argued that this enhancement of the force can be interpreted in terms of the frequency spectrum of vacuum fluctuations. In the limit of a perfectly conducting sphere, there are cancellations between different parts of the spectrum which no longer occur as completely in the case of a sphere with frequency dependent polarizability. Estimates of the magnitude of the oscillatory component of the force suggest that it may be large enough to be observable.Comment: 18pp, LaTex, 7 figures, uses epsf. Several minor errors corrected, additional comments added in the final two sections, and references update

    Spontaneous emission of an atom placed near a nanobelt of elliptical cross-section

    Get PDF
    Spontaneous emission of an atom (molecule) placed near a nanocylinder of elliptical cross-section of an arbitrary composition is studied. The analytical expressions have been obtained for the radiative and nonradiative channels of spontaneous decay and investigated in details.Comment: 35 pages, 11 figure

    Import of cytochrome c into mitochondria

    Get PDF
    The import of cytochrome c into mitochondria can be resolved into a number of discrete steps. Here we report on the covalent attachment of heme to apocytochrome c by the enzyme cytochrome c heme lyase in mitochondria from Neurospora crassa. A new method was developed to measure directly the linkage of heme to apocytochrome c. This method is independent of conformational changes in the protein accompanying heme attachment. Tryptic peptides of [35S]cysteine-labelled apocytochrome c, and of enzymatically formed holocytochrome c, were resolved by reverse-phase HPLC. The cysteine-containing peptide to which heme was attached eluted later than the corresponding peptide from apocytochrome c and could be quantified by counting 35S radioactivity as a measure of holocytochrome c formation. Using this procedure, the covalent attachment of heme to apocytochrome c, which is dependent on the enzyme cytochrome c heme lyase, could be measured. Activity required heme (as hemin) and could be reversibly inhibited by the analogue deuterohemin. Holocytochrome c formation was stimulated 5–10-fold by NADH > NADPH > glutathione and was independent of a potential across the inner mitochondrial membrane. NADH was not required for the binding of apocytochrome c to mitochondria and was not involved in the reduction of the cysteine thiols prior to heme attachment. Holocytochrome c formation was also dependent on a cytosolic factor that was necessary for the heme attaching step of cytochrome c import. The factor was a heat-stable, protease-insensitive, low-molecular-mass component of unknown function. Cytochrome c heme lyase appeared to be a soluble protein located in the mitochondrial intermembrane space and was distinct from the previously identified apocytochrome c binding protein having a similar location. A model is presented in which the covalent attachment of heme by cytochrome c heme lyase also plays an essential role in the import pathway of cytochrome c

    Proteins Inform Survival-Based Differences in Patients with Glioblastoma

    Get PDF
    Background: Improving the care of patients with glioblastoma (GB) requires accurate and reliable predictors of patient prognosis. Unfortunately, while protein markers are an effective readout of cellular function, proteomics has been underutilized in GB prognostic marker discovery. Methods: For this study, GB patients were prospectively recruited and proteomics discovery using liquid chromatography-mass spectrometry analysis (LC-MS/MS) was performed for 27 patients including 13 short-term survivors (STS) (≀10 months) and 14 long-term survivors (LTS) (≄18 months). Results: Proteomics discovery identified 11 941 peptides in 2495 unique proteins, with 469 proteins exhibiting significant dysregulation when comparing STS to LTS. We verified the differential abundance of 67 out of these 469 proteins in a small previously published independent dataset. Proteins involved in axon guidance were upregulated in STS compared to LTS, while those involved in p53 signaling were upregulated in LTS. We also assessed the correlation between LS MS/MS data with RNAseq data from the same discovery patients and found a low correlation between protein abundance and mRNA expression. Finally, using LC-MS/MS on a set of 18 samples from 6 patients, we quantified the intratumoral heterogeneity of more than 2256 proteins in the multisample dataset. Conclusions: These proteomic datasets and noted protein variations present a beneficial resource for better predicting patient outcome and investigating potential therapeutic targets

    A new interpretation of total column BrO during Arctic spring

    Get PDF
    Emission of bromine from sea-salt aerosol, frost flowers, ice leads, and snow results in the nearly complete removal of surface ozone during Arctic spring. Regions of enhanced total column BrO observed by satellites have traditionally been associated with these emissions. However, airborne measurements of BrO and O3 within the convective boundary layer (CBL) during the ARCTAS and ARCPAC field campaigns at times bear little relation to enhanced column BrO. We show that the locations of numerous satellite BrO “hotspots” during Arctic spring are consistent with observations of total column ozone and tropopause height, suggesting a stratospheric origin to these regions of elevated BrO. Tropospheric enhancements of BrO large enough to affect the column abundance are also observed, with important contributions originating from above the CBL. Closure of the budget for total column BrO, albeit with significant uncertainty, is achieved by summing observed tropospheric partial columns with calculated stratospheric partial columns provided that natural, short-lived biogenic bromocarbons supply between 5 and 10 ppt of bromine to the Arctic lowermost stratosphere. Proper understanding of bromine and its effects on atmospheric composition requires accurate treatment of geographic variations in column BrO originating from both the stratosphere and troposphere

    Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states

    Get PDF
    We study experimentally time-resolved emission of colloidal CdSe quantum dots in an environment with a controlled local density of states (LDOS). The decay rate is measured versus frequency and as a function of distance to a mirror. We observe a linear relation between the decay rate and the LDOS, allowing us to determine the size-dependent quantum efficiency and oscillator strength. We find that the quantum efficiency decreases with increasing emission energy mostly due to an increase in nonradiative decay. We manage to obtain the oscillator strength of the important class of CdSe quantum dots. The oscillator strength varies weakly with frequency in agreement with behavior of quantum dots in the strong confinement limit. Surprisingly, previously calculated tight-binding results differ by a factor of 5 with the measured absolute values. Results from pseudopotential calculations agree well with the measured radiative rates. Our results are relevant for applications of CdSe quantum dots in spontaneous emission control and cavity quantum electrodynamic

    Bi-stable tunneling current through a molecular quantum dot

    Get PDF
    An exact solution is presented for tunneling through a negative-U d-fold degenerate molecular quantum dot weakly coupled to electrical leads. The tunnel current exhibits hysteresis if the level degeneracy of the negative-U dot is larger than two (d>2). Switching occurs in the voltage range V1 < V < V2 as a result of attractive electron correlations in the molecule, which open up a new conducting channel when the voltage is above the threshold bias voltage V2. Once this current has been established, the extra channel remains open as the voltage is reduced down to the lower threshold voltage V1. Possible realizations of the bi-stable molecular quantum dots are fullerenes, especially C60, and mixed-valence compounds.Comment: 5 pages, 1 figure. (v2) Figure updated to compare the current hysteresis for degeneracies d=4 and d>>1 of the level in the dot, minor corrections in the text. To appear in Phys. Rev.

    Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC

    Get PDF
    We derive tropospheric column BrO during the ARCTAS and ARCPAC field campaigns in spring 2008 using retrievals of total column BrO from the satellite UV nadir sensors OMI and GOME-2 using a radiative transfer model and stratospheric column BrO from a photochemical simulation. We conduct a comprehensive comparison of satellite-derived tropospheric BrO column to aircraft in-situ observations of BrO and related species. The aircraft profiles reveal that tropospheric BrO, when present during April 2008, was distributed over a broad range of altitudes rather than being confined to the planetary boundary layer (PBL). Perturbations to the total column resulting from tropospheric BrO are the same magnitude as perturbations due to longitudinal variations in the stratospheric component, so proper accounting of the stratospheric signal is essential for accurate determination of satellite-derived tropospheric BrO. We find reasonably good agreement between satellite-derived tropospheric BrO and columns found using aircraft in-situ BrO profiles, particularly when satellite radiances were obtained over bright surfaces (albedo \u3e0.7), for solar zenith angl
    • 

    corecore