2,027 research outputs found
Gravitational quasinormal radiation of higher-dimensional black holes
We find the gravitational resonance (quasinormal) modes of the higher
dimensional Schwarzschild and Reissner-Nordstrem black holes. The effect on the
quasinormal behavior due to the presence of the term is investigated.
The QN spectrum is totally different for different signs of . In more
than four dimensions there excited three types of gravitational modes: scalar,
vector, and tensor. They produce three different quasinormal spectra, thus the
isospectrality between scalar and vector perturbations, which takes place for
D=4 Schwarzschild and Schwarzschild-de-Sitter black holes, is broken in higher
dimensions. That is the scalar-type gravitational perturbations, connected with
deformations of the black hole horizon, which damp most slowly and therefore
dominate during late time of the black hole ringing.Comment: 13 pages, 2 figures, several references are adde
Laser gas-discharge absorption measurements of the ratio of two transition rates in argon
The ratio of two line strengths at 922.7 nm and 978.7 nm of argon is measured
in an argon pulsed discharge with the use of a single-mode Ti:Sapphire laser.
The result 3.29(0.13) is in agreement with our theoretical prediction 3.23 and
with a less accurate ratio 2.89(0.43) from the NIST database.Comment: 5 pages, 2 figures, 1 tabl
Recommended from our members
Characterization of pore evolution in ceramics during creep failure and densification. Final report, April 15, 1984--April 14, 1995
This research program was divided into two phases, one involving creep cavitation, the other cavity evolution during sintering. In the former, work was aimed at determining the effect of microstructure and stress state upon creep cavitation, while in the latter, the principal objective was the characterization of pore evolution during sintering. In order to meet these objectives, the creep cavitation portion of the program was centered around small-angle neutron scattering, supplemented by electron microscopy and precision density measurements. The neutron scattering measurements yielded cavity nucleation and growth rates, and average pore, size, distribution, and morphology. These data were used to evaluate current cavitation models, and to implement improved modelling efforts. Additionally, stereoimaging analysis was used to determine grain boundary sliding displacements, which appear to be the critical driving force responsible for cavity nucleation and early growth. Effort in the pore sintering phase focussed on characterization of pore evolution during intermediate and final stage sintering of alumina using both single and multiple scattering techniques. Electron microscopy, density measurements, and mercury intrusion porosimetry measurements complemented the scattering results. The effects of sintering trajectory, green state, powder morphology, and additives were evaluated. These results were compared to current sintering models
Scalar Synchrotron Radiation in the Schwarzschild-anti-de Sitter Geometry
We present a complete relativistic analysis for the scalar radiation emitted
by a particle in circular orbit around a Schwarzschild-anti-de Sitter black
hole. If the black hole is large, then the radiation is concentrated in narrow
angles- high multipolar distribution- i.e., the radiation is synchrotronic.
However, small black holes exhibit a totally different behavior: in the small
black hole regime, the radiation is concentrated in low multipoles. There is a
transition mass at , where is the AdS radius. This behavior is
new, it is not present in asymptotically flat spacetimes.Comment: 13 pages, 6 figures, published version. References adde
Magnetic ordering of Mn sublattice, dense Kondo lattice behavior of Ce in (RPd3)8Mn (R = La, Ce)
We have synthesized two new interstitial compounds (RPd3)8Mn (R = La and Ce).
The Mn ions present in "dilute" concentration of just 3 molar percent form a
sublattice with an unusually large Mn-Mn near neighbor distance of ~ 85 nm.
While the existence of (RPd3)8M (where M is a p-block element) is already
documented in the literature, the present work reports for the first time the
formation of this phase with M being a 3d element. In (LaPd3)8Mn, the Mn
sub-lattice orders antiferromagnetically as inferred from the peaks in
low-field magnetization at 48 K and 23 K. The latter peak progressively shifts
towards lower temperatures in increasing magnetic field and disappears below
1.8 K in a field of ~ 8 kOe. On the other hand in (CePd3)8Mn the Mn sublattice
undergoes a ferromagnetic transition around 35 K. The Ce ions form a dense
Kondo-lattice and are in a paramagnetic state at least down to 1.5 K. A
strongly correlated electronic ground state arising from Kondo effect is
inferred from the large extrapolated value of C/T = 275 mJ/Ce-mol K^2 at T = 0
K. In contrast, the interstitial alloys RPd3Mnx (x = 0.03 and 0.06), also
synthesized for the first time, have a spin glass ground state due to the
random distribution of the Mn ions over the available "1b" sites in the parent
RPd3 crystal lattice.Comment: 18 figures and 20 pages of text documen
Advanced Compton Telescope Designs and SN Science
The Advanced Compton Telescope (ACT) has been suggested to be the optimal
next-generation instrument to study nuclear gamma-ray lines. In this work, we
investigate the potential of three hypothetical designs of the ACT to perform
SN science. We provide estimates of 1) the SN detection rate, 2) the SN Ia
discrimination rate, and 3) which gamma-ray lines would be detected from
specific supernova remnants. We find that the prompt emission from a SN Ia is
such that it is unlikely that one would be within the range that an
INTERMEDIATE ACT would be able to distinguish between explosion scenarios,
although such an instrument would detect a handful of SNRs.
We further find that the SUPERIOR ACT design would be a truly breakthrough
instrument for SN science. By supplying these estimates, we intend to assist
the gamma-ray astrophysics community in deciding the course of the next decade
of gamma-ray SN science.Comment: 10 pages, accepted for publication in New astronomy Reviews
(Astronomy with Radioactivities III
Orbital effect of in-plane magnetic field on quantum transport in chaotic lateral dots
We show how the in-plane magnetic field, which breaks time-reversal and
rotational symmetries of the orbital motion of electrons in a heterostructure
due to the momentum-dependent inter-subband mixing, affects weak localisation
correction to conductance of a large-area chaotic lateral quantum dot and
parameteric dependences of universal conductance fluctuations in it.Comment: 4 pages with a figur
Area Spectrum of Extremal Reissner-Nordstr\"om Black Holes from Quasi-normal Modes
Using the quasi-normal modes frequency of extremal Reissner-Nordstr\"om black
holes, we obtain area spectrum for these type of black holes. We show that the
area and entropy black hole horizon are equally spaced. Our results for the
spacing of the area spectrum differ from that of schwarzschild black holes.Comment: 6 pages, no figure, accepted for publication in Phys. Rev.
Calibration Model for Detection of Potential Demodulating Behaviour in Biological Media Exposed to RF Energy
YesPotential demodulating ability in biological tissue exposed to Radio Frequency (RF) signals intrinsically requires an unsymmetrical diode-like nonlinear response in tissue samples. This may be investigated by observing possible generation of the second harmonic in a cavity resonator designed to have fundamental and second harmonic resonant frequencies with collocated antinodes. Such a response would be of interest as being a mechanism that could enable demodulation of information-carrying waveforms having modulating frequencies in ranges that could interfere with cellular processes. Previous work has developed an experimental system to test for such responses: the present work reports an electric circuit model devised to facilitate calibration of any putative nonlinear RF energy conversion occurring within a nonlinear test-piece inside the cavity. The method is validated computationally and experimentally using a well-characterised nonlinear device. The variations of the reflection coefficients of the fundamental and second harmonic responses of the cavity due to adding nonlinear and lossy material are also discussed. The proposed model demonstrates that the sensitivity of the measurement equipment plays a vital role in deciding the required input power to detect any second harmonic signal, which is expected to be very weak. The model developed here enables the establishment of a lookup table giving the level of the second harmonic signal in the detector as a function of the specific input power applied in a measurement. Experimental results are in good agreement with the simulated results.Engineering and Physical Science Research Council through Grant EP/E022936
Abnormal phenomena in a one-dimensional periodic structure containing left-handed materials
The explicit dispersion equation for a one-dimensional periodic structure
with alternative layers of left-handed material (LHM) and right-handed material
(RHM) is given and analyzed. Some abnormal phenomena such as spurious modes
with complex frequencies, discrete modes and photon tunnelling modes are
observed in the band structure. The existence of spurious modes with complex
frequencies is a common problem in the calculation of the band structure for
such a photonic crystal. Physical explanation and significance are given for
the discrete modes (with real values of wave number) and photon tunnelling
propagation modes (with imaginary wave numbers in a limited region).Comment: 10 pages, 4 figure
- …