490 research outputs found

    Barriers of digital transformation: The case of small indigenous businesses in Indonesia during COVID-19

    Get PDF
    An indigenous craft, Batik permeates the lives of Indonesians and represents national pride. Often established as a female-headed family enterprise, small Batik businesses in Indonesia’s Madura region are handed down from one generation to another and operate on a traditional brick-and-mortar retail channel, relying heavily on tourism to attract customers. COVID-19 lockdown has crippled that trading chain. E-commerce trading through digital platforms, such as e-marketplaces and social media, seems to be the only viable solution. A study of 12 small Batik businesses in Madura prior to, and after, the COVID-19 lockdown suggests significant barriers exist to digitally transform these businesses. Besides the usual environment, and socio-economic barriers to digital innovation such as illiteracy and lack of digital skills, reliance on younger family members and community support, indigeneity aspects such as ecological condition, socio-culture value and local wisdom, have been found to deter the transformation. We discuss the implications of these findings and suggest avenues for further exploration

    Transmission Estimation at the Cram\'er-Rao Bound for Squeezed States of Light in the Presence of Loss and Imperfect Detection

    Full text link
    Enhancing the precision of a measurement requires maximizing the information that can be gained about the quantity of interest from probing a system. For optical based measurements, such an enhancement can be achieved through two approaches, increasing the number of photons used to interrogate the system and using quantum states of light to increase the amount of quantum Fisher information gained per photon. Here we consider the use of quantum states of light with a large number of photons, namely the bright single-mode and two-mode squeezed states, that take advantage of both of these approaches for the problem of transmission estimation. We show that, in the limit of large squeezing, these states approach the maximum possible quantum Fisher information per photon for transmission estimation that is achieved with the Fock state and the vacuum two-mode squeezed state. Since the bright states we consider can be generated at much higher powers than the quantum states that achieve the maximum quantum Fisher information per photon, they can achieve an much higher absolute precision as quantified by the quantum Cram\'er-Rao bound. We discuss the effects of losses external to the system on the precision of transmission estimation and identify simple measurements techniques that can saturate the quantum Cram\'er-Rao bound for the bright squeezed states even in the presence of such external losses

    Trust as a mediator in the relationship between childhood sexual abuse and IL-6 level in adulthood

    Get PDF
    Childhood sexual abuse (CSA) has been shown to predict the coupling of depression and inflammation in adulthood. Trust within intimate relationships, a core element in marital relations, has been shown to predict positive physical and mental health outcomes, but the mediating role of trust in partners in the association between CSA and inflammation in adulthood requires further study. The present study aimed to examine the impact of CSA on inflammatory biomarkers (IL-6 and IL-1β) in adults with depression and the mediating role of trust. A cross-sectional survey data set of adults presenting with mood and sleep disturbance was used in the analysis. CSA demonstrated a significant negative correlation with IL-6 level (r = -0.28, p<0. 01) in adults with clinically significant depression, while trust showed a significant positive correlation with IL-6 level (r = 0.36, p < .01). Sobel test and bootstrapping revealed a significant mediating role for trust between CSA and IL-6 level. CSA and trust in partners were revealed to have significant associations with IL-6 level in adulthood. Counterintuitively, the directions of association were not those expected. Trust played a mediating role between CSA and adulthood levels of IL-6. Plausible explanations for these counterintuitive findings are discussed

    Does religion matter to informal finance? Evidence from trade credit in China

    Get PDF
    <p>Informal finance plays an important role in transitional economies with weak legal institutions, such as China. As a major informal finance instrument, trade credit relies on informal institutions and enforcement. The paper argues that religion enhances the ethical climate in which firms do business, and it predicts that religiosity increases trade credit, in that religion enhances enforcement by increasing non-pecuniary cost and reducing risk-taking. The results based on Chinese non-state listed firms between 2003 and 2013 confirm the prediction that firms located in high-religiosity regions are associated with more trade credit, especially in regions where formal institutions are weak or formal financing channels are limited. Furthermore, the paper shows that religiosity reduces overdue trade credit. Finally, the results are driven by Buddhism, Taoism and Christianity, but not Islam.</p

    Teaching and learning innovations for distance learning in the digital era: a literature review

    Get PDF
    This paper presents a review study on teaching and learning innovations (TLIs) for distance learning in higher education, which involves substantial use of technology in its practice. The study covers 247 publications that were published from 2017 to 2022 and collected from Scopus to analyze the patterns and trends of TLIs for distance learning in higher education. The results show four main types of TLIs: educational technologies, teaching and learning approaches and activities, teaching and learning programs, and assessment approaches and activities. They also reveal seven major pedagogical patterns in the TLIs, covering the learning of science through online laboratories, virtual and augmented reality, multimedia, gaming, collaboration, tasks/projects, and blended/hybrid/flipped learning. These findings suggest implications for distance learning, covering the use of online laboratories in science courses, promotion of virtual and augmented-based distance learning, encouragement of development, implementation, and the study of pedagogical approaches to distance learning, as well as the increase in interactivity in multimedia-based distance learning

    The 18 kDa translocator protein, microglia and neuroinflammation

    Get PDF
    The 18 kDa translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is expressed in the injured brain. It has become known as an imaging marker of “neuroinflammation” indicating active disease, and is best interpreted as a nondiagnostic biomarker and disease staging tool that refers to histopathology rather than disease etiology. The therapeutic potential of TSPO as a drug target is mostly based on the understanding that it is an outer mitochondrial membrane protein required for the translocation of cholesterol, which thus regulates the rate of steroid synthesis. This pivotal role together with the evolutionary conservation of TSPO has underpinned the belief that any loss or mutation of TSPO should be associated with significant physiological deficits or be outright incompatible with life. However, against prediction, full Tspo knockout mice are viable and across their lifespan do not show the phenotype expected if cholesterol transport and steroid synthesis were significantly impaired. Thus, the “translocation” function of TSPO remains to be better substantiated. Here, we discuss the literature before and after the introduction of the new nomenclature for TSPO and review some of the newer findings. In light of the controversy surrounding the function of TSPO, we emphasize the continued importance of identifying compounds with confirmed selectivity and suggest that TSPO expression is analyzed within specific disease contexts rather than merely equated with the reified concept of “neuroinflammation.” © 2014 The Authors© 2014 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited

    Diagnostic assessment of glaucoma and non-glaucomatous optic neuropathies via optical texture analysis of the retinal nerve fibre layer

    Get PDF
    The clinical diagnostic evaluation of optic neuropathies relies on the analysis of the thickness of the retinal nerve fibre layer (RNFL) by optical coherence tomography (OCT). However, false positives and false negatives in the detection of RNFL abnormalities are common. Here we show that an algorithm integrating measurements of RNFL thickness and reflectance from standard wide-field OCT scans can be used to uncover the trajectories and optical texture of individual axonal fibre bundles in the retina and to discern distinctive patterns of loss of axonal fibre bundles in glaucoma, compressive optic neuropathy, optic neuritis and non-arteritic anterior ischaemic optic neuropathy. Such optical texture analysis can detect focal RNFL defects in early optic neuropathy, as well as residual axonal fibre bundles in end-stage optic neuropathy that were indiscernible by conventional OCT analysis and by red-free RNFL photography. In a diagnostic-performance study, optical texture analysis of the RNFL outperformed conventional OCT in the detection of glaucoma, as defined by visual-field testing or red-free photography. Our findings show that optical texture analysis of the RNFL for the detection of optic neuropathies is highly sensitive and specific

    Prognostic significance of minichromosome maintenance proteins in breast cancer.

    Get PDF
    A role for the minichromosome maintenance (MCM) proteins in cancer initiation and progression is slowly emerging. Functioning as a complex to ensure a single chromosomal replication per cell cycle, the six family members have been implicated in several neoplastic disease states, including breast cancer. Our study aim to investigate the prognostic significance of these proteins in breast cancer. We studied the expression of MCMs in various datasets and the associations of the expression with clinicopathological parameters. When considered alone, high level MCM4 overexpression was only weakly associated with shorter survival in the combined breast cancer patient cohort (n = 1441, Hazard Ratio = 1.31; 95% Confidence Interval = 1.11-1.55; p = 0.001). On the other hand, when we studied all six components of the MCM complex, we found that overexpression of all MCMs was strongly associated with shorter survival in the same cohort (n = 1441, Hazard Ratio = 1.75; 95% Confidence Interval = 1.31-2.34; p < 0.001), suggesting these MCM proteins may cooperate to promote breast cancer progression. Indeed, their expressions were significantly correlated with each other in these cohorts. In addition, we found that increasing number of overexpressed MCMs was associated with negative ER status as well as treatment response. Together, our findings are reproducible in seven independent breast cancer cohorts, with 1441 patients, and suggest that MCM profiling could potentially be used to predict response to treatment and prognosis in breast cancer patients.published_or_final_versio

    PEG Branched Polymer for Functionalization of Nanomaterials with Ultralong Blood Circulation

    Full text link
    Nanomaterials have been actively pursued for biological and medical applications in recent years. Here, we report the synthesis of several new poly(ethylene glycol) grafted branched-polymers for functionalization of various nanomaterials including carbon nanotubes, gold nanoparticles (NP) and gold nanorods (NRs), affording high aqueous solubility and stability for these materials. We synthesize different surfactant polymers based upon poly-(g-glutamic acid) (gPGA) and poly(maleic anhydride-alt-1-octadecene) (PMHC18). We use the abundant free carboxylic acid groups of gPGA for attaching lipophilic species such as pyrene or phospholipid, which bind to nanomaterials via robust physisorption. Additionally, the remaining carboxylic acids on gPGA or the amine-reactive anhydrides of PMHC18 are then PEGylated, providing extended hydrophilic groups, affording polymeric amphiphiles. We show that single-walled carbon nanotubes (SWNTs), Au NPs and NRs functionalized by the polymers exhibit high stability in aqueous solutions at different pHs, at elevated temperatures and in serum. Morever, the polymer-coated SWNTs exhibit remarkably long blood circulation (t1/2 22.1 h) upon intravenous injection into mice, far exceeding the previous record of 5.4 h. The ultra-long blood circulation time suggests greatly delayed clearance of nanomaterials by the reticuloendothelial system (RES) of mice, a highly desired property for in vivo applications of nanomaterials, including imaging and drug delivery
    corecore