259 research outputs found

    7α,15α-Dibromo-8,16-diphenyl-6,7,14,15-tetra­hydro-6α,14α-epithio­cyclo­octa­[1,2-b:5,6-b′]diquinoline deuterochloro­form solvate

    Get PDF
    In the racemic title compound, C34H22Br2N2S·CDCl3, pairs of diquinoline host mol­ecules form centrosymmetric brick-like dimers utilizing three different aryl edge-to-face inter­actions (EF1–3). The dimeric (EF)6 (i.e. 2 × EF1–3) building blocks pack with the deuterochloro­form guest mol­ecules positioned near each of their corners. The Cl atoms of the latter are disordered over two sets of sites in a 0.53 (2):0.47 (2) ratio

    8-Methyl-5-methyl­ene-2-oxotricyclo[5.3.1.13,9]dodecan-endo-8-ol

    Get PDF
    The title compound, C14H20O2, crystallizes with homochiral chains of mol­ecules hydrogen bonded together along the b axis. Adjacent chains in the ab plane contain mol­ecules of the same chirality, leading to a chiral segregation of the mol­ecules into layers

    Examining protective effects of SARS-CoV-2 neutralizing antibodies after vaccination or monoclonal antibody administration

    Get PDF
    While new vaccines for SARS-CoV-2 are authorized based on neutralizing antibody (nAb) titer against emerging variants of concern, an analogous pathway does not exist for preventative monoclonal antibodies. In this work, nAb titers were assessed as correlates of protection against COVID-19 in the casirivimab + imdevimab monoclonal antibody (mAb) prevention trial (ClinicalTrials.gov #NCT4452318) and in the mRNA-1273 vaccine trial (ClinicalTrials.gov #NCT04470427). In the mAb trial, protective efficacy of 92% (95% confidence interval (CI): 84%, 98%) is associated with a nAb titer of 1000 IU50/ml, with lower efficacy at lower nAb titers. In the vaccine trial, protective efficacies of 93% [95% CI: 91%, 95%] and 97% (95% CI: 95%, 98%) are associated with nAb titers of 100 and 1000 IU50/ml, respectively. These data quantitate a nAb titer correlate of protection for mAbs benchmarked alongside vaccine induced nAb titers and support nAb titer as a surrogate endpoint for authorizing new mAbs

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Topical use of MMC in the upper aerodigestive tract: a review on the side effects

    Get PDF
    Not much is known about the side effects of mitomycin C (MMC), an anti-fibrogenetic agent, in the upper aerodigestive tract. However, its use in ophthalmology is widely known and without quantitatively important side effects. A literature review was performed for side effects of MMC in the upper aerodigestive tract. Forty-six articles, describing the use of MMC to prevent scarring, were retracted from PubMed. Thirty-two are human studies. MMC is used in different concentrations (0.1–10 mg/ml) with different application times (2–5 min) and frequencies (up to 4 times). Five hundred and thirty-eight patients were included in those publications, of whom 19 developed side effects (3.53%). No side effects developed in studies, where post-application irrigation with saline was reported. The longest mean follow-up period is 75.5 months. Direct relations between the reported side effects and MMC seem absent in most studies. Serious complications seem to occur when MMC is used in high concentrations. Unfortunately, sometimes crucial information is lacking. One patient was described who supposedly developed laryngeal carcinoma after repeated treatment of hyperkeratosis and anterior commissure webbing. Animal studies show that excessive fibrin production can lead to acute airway obstruction. In conclusion, topical application of MMC on a wound with consecutive irrigation with saline can be performed safely to prevent scar formation in circular structures of the upper aerodigestive tract. Long-term yearly control of the application site seems advisable

    Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817

    No full text
    In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector's differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detector's gravitational-wave response. The gravitational-wave response model is determined by the detector's opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10 degrees in phase across the relevant frequency band 20 Hz to 1 kHz

    Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy

    Get PDF
    The Laser Interferometer Gravitational Wave Observatory (LIGO) consists of two widely separated 4 km laser interferometers designed to detect gravitational waves from distant astrophysical sources in the frequency range from 10 Hz to 10 kHz. The first observation run of the Advanced LIGO detectors started in September 2015 and ended in January 2016. A strain sensitivity of better than 10−23/Hz−−−√ was achieved around 100 Hz. Understanding both the fundamental and the technical noise sources was critical for increasing the astrophysical strain sensitivity. The average distance at which coalescing binary black hole systems with individual masses of 30  M⊙ could be detected above a signal-to-noise ratio (SNR) of 8 was 1.3 Gpc, and the range for binary neutron star inspirals was about 75 Mpc. With respect to the initial detectors, the observable volume of the Universe increased by a factor 69 and 43, respectively. These improvements helped Advanced LIGO to detect the gravitational wave signal from the binary black hole coalescence, known as GW150914

    First measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814

    Get PDF
    International audienceWe present a multi-messenger measurement of the Hubble constant H 0 using the binary–black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole merger. Our analysis results in , which is consistent with both SN Ia and cosmic microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20, 140] km s−1 Mpc−1, and it depends on the assumed prior range. If we take a broader prior of [10, 220] km s−1 Mpc−1, we find (57% of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on H 0
    corecore