1,718 research outputs found

    Energy associated with charged dilaton black holes

    Full text link
    It is known that certain properties of charged dilaton black holes depend on a free parameter β\beta which controls the strength of the coupling of the dilaton to the Maxwell field. We obtain the energy associated with static spherically symmetric charged dilaton black holes for arbitrary value of the coupling parameter and find that the energy distribution depends on the value of β\beta. With increasing radial distance, the energy in a sphere increases for β=0\beta = 0 as well as for β1\beta 1, and remains constant for β=1\beta = 1. However, the total energy turns out to be the same for all values of β\beta.Comment: singlespaced 7 pages, LaTex, no figures, misprints corrected, to appear in Int. J. Mod. Phys.

    Dark solitons at nonlinear interfaces

    Get PDF
    The refraction of dark solitons at a planar boundary separating two defocusing Kerr media is simulated and analyzed, for the first time (to our knowledge). Analysis is based on the nonlinear Helmholtz equation and is thus valid for any angle of incidence. A new law, governing refraction of black solitons, is combined with one describing bright soliton refraction to yield a generalized Snell’s law whose validity is verified numerically. The complexity of gray soliton refraction is also analyzed, and illustrated by a change from external to internal refraction on varying the soliton contrast parameter

    Universal quantum computation with the Orbital Angular Momentum of a single photon

    Full text link
    We prove that a single photon with quantum data encoded in its orbital angular momentum can be manipulated with simple optical elements to provide any desired quantum computation. We will show how to build any quantum unitary operator using beamsplitters, phase shifters, holograms and an extraction gate based on quantum interrogation. The advantages and challenges of these approach are then discussed, in particular the problem of the readout of the results.Comment: First version. Comments welcom

    Nonlinear interfaces: intrinsically nonparaxial regimes and effects

    Get PDF
    The behaviour of optical solitons at planar nonlinear boundaries is a problem rich in intrinsically nonparaxial regimes that cannot be fully addressed by theories based on the nonlinear Schrödinger equation. For instance, large propagation angles are typically involved in external refraction at interfaces. Using a recently proposed generalized Snell's law for Helmholtz solitons, we analyse two such effects: nonlinear external refraction and total internal reflection at interfaces where internal and external refraction, respectively, would be found in the absence of nonlinearity. The solutions obtained from the full numerical integration of the nonlinear Helmholtz equation show excellent agreement with the theoretical predictions

    Korteweg-de Vries description of Helmholtz-Kerr dark solitons

    Get PDF
    A wide variety of different physical systems can be described by a relatively small set of universal equations. For example, small-amplitude nonlinear Schrödinger dark solitons can be described by a Korteweg-de Vries (KdV) equation. Reductive perturbation theory, based on linear boosts and Gallilean transformations, is often employed to establish connections to and between such universal equations. Here, a novel analytical approach reveals that the evolution of small-amplitude Helmholtz–Kerr dark solitons is also governed by a KdV equation. This broadens the class of nonlinear systems that are known to possess KdV soliton solutions, and provides a framework for perturbative analyses when propagation angles are not negligibly small. The derivation of this KdV equation involves an element that appears new to weakly nonlinear analyses, since transformations are required to preserve the rotational symmetry inherent to Helmholtz-type equations

    Helmholtz bright and boundary solitons

    Get PDF
    We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic Non-Linear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently-reported Helmholtz bright solitons, for this type of polynomial non-linearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterpart

    Energy Distribution of a Charged Regular Black Hole

    Get PDF
    We calculate the energy distribution of a charged regular black hole by using the energy-momentum complexes of Einstein and M{\o}ller.Comment: 6 pages, no figure

    Absolute reliability and concurrent validity of hand held dynamometry and isokinetic dynamometry in the hip, knee and ankle joint: Systematic review and meta-analysis

    Get PDF
    Indexación: Scopus.The purpose of the study is to establish absolute reliability and concurrent validity between hand-held dynamometers (HHDs) and isokinetic dynamometers (IDs) in lower extremity peak torque assessment. Medline, Embase, CINAHL databases were searched for studies related to psychometric properties in muscle dynamometry. Studies considering standard error of measurement SEM (%) or limit of agreement LOA (%) expressed as percentage of the mean, were considered to establish absolute reliability while studies using intra-class correlation coefficient (ICC) were considered to establish concurrent validity between dynamometers. In total, 17 studies were included in the meta-analysis. The COSMIN checklist classified them between fair and poor. Using HHDs, knee extension LOA (%) was 33.59%, 95% confidence interval (CI) 23.91 to 43.26 and ankle plantar flexion LOA (%) was 48.87%, CI 35.19 to 62.56. Using IDs, hip adduction and extension; knee flexion and extension; and ankle dorsiflexion showed LOA (%) under 15%. Lower hip, knee, and ankle LOA (%) were obtained using an ID compared to HHD. ICC between devices ranged between 0.62, CI (0.37 to 0.87) for ankle dorsiflexion to 0.94, IC (0.91to 0.98) for hip adduction. Very high correlation were found for hip adductors and hip flexors and moderate correlations for knee flexors/extensors and ankle plantar/dorsiflexors.https://www.degruyter.com/view/j/med.2017.12.issue-1/med-2017-0052/med-2017-0052.xm

    Leaf beetles are ant-nest beetles: the curious life of the juvenile stages of case-bearers (Coleoptera, Chrysomelidae, Cryptocephalinae)

    Get PDF
    Although some species of Cryptocephalinae (Coleoptera: Chrysomelidae) have been documented with ants (Hymenoptera: Formicidae) for almost 200 years, information on this association is fragmentary. This contribution synthesizes extant literature and analysizes the data for biological patterns. Myrmecophily is more common in the tribe Clytrini than in Cryptocephalini, but not documented for Fulcidacini or the closely-related Lamprosomatinae. Myrmecophilous cryptocephalines (34 species in 14 genera) primarily live among formicine and myrmecines ants as hosts. These two ant lineages are putative sister-groups, with their root-node dated to between 77–90 mya. In the New World tropics, the relatively recent radiation of ants from moist forests to more xeric ecosystems might have propelled the association of cryptocephalines and ant nests. Literature records suggest that the defensive behavioral profile or chemical profile (or both) of these ants has been exploited by cryptocephalines. Another pattern appears to be that specialized natural enemies, especially parasitoid Hymenoptera, exploit cryptocephaline beetles inside the ant nests. With the extant data at hand, based on the minimum age of a fossil larva dated to 45 mya, we can infer that the origin of cryptocephaline myrmecophily could have arisen within the Upper Cretaceous or later. It remains unknown how many times myrmecophily has appeared, or how old is the behavior. This uncertainty is compounded by incongruent hypotheses about the origins of Chrysomelidae and angiosperm-associated lineages of cryptocephalines. Living with ants offers multiple advantages that might have aided the colonization of xeric environments by some cryptocephaline species.Fil: Agrain, Federico Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Buffington, Matthew L.. National Museum of Natural History; Estados UnidosFil: Chaboo, Caroline S.. University of Kansas; Estados UnidosFil: Chamorro, Maria L.. National Museum of Natural History; Estados UnidosFil: Schöller, Matthias. Humboldt-Universität zu Berlin; Alemani
    corecore