117 research outputs found

    The Detection of Iridium Using Laser-Induced Breakdown Spectroscopy

    Get PDF
    Although one thinks of a thruster as utilizing both a fuel and an oxidizer, as well as an ignition source to release molecular energy, thrusters exist that combine the fuel and oxidizer in a single fluid. These monopropellant thrusters can utilize either an ignition source or a catalyst to release the molecular energy stored within the propellant. Monopropellant thrusters are especially attractive for space flight systems because they only require a single propellant line which reduces systems weight and complexity. Some monopropellant thrusters, including legacy hydrazine thrusters, and newer thrusters using hydrazine replacements, that utilize a heterogeneous catalyst have experienced performance anomalies due to the degradation of the catalyst bed. At the Air Force Research Laboratory, current state-of-health diagnostic techniques ate being developed to better understand this catalyst bed degradation for the new hydrazine replacement monopropellant, AF-M315E. Laser-induced Breakdown Spectroscopy (LIBS) is being used to detect and quantify active catalyst materials in the exhaust plume, such as iridium. Previous work has been unsuccessful in detecting iridium. However, by shortening the delay settings on the camera detector, the spectrometer used in LIBS will be able to pick up more of the emissions from the laser-ablated sample, leading to the detection of iridium. DISTRIBUTION A: Approved for public release: distribution unlimited

    Isoconversional kinetic analysis applied to five phosphoniumcation-based ionic liquids

    Get PDF
    Thermal degradation of five phosphonium cation-based ionic liquids ([P66614][BEHP], [P66614][(iC8)2PO2],[P66614][NTf2], [P44414][DBS] and [P4442][DEP]) was studied using dynamic methodology (25–600◦C at 5,10 and 20◦C/min) in both inert (nitrogen) and reactive (oxygen) atmospheres. In addition, isothermalexperiments (90 min at 200, 225 and 250◦C) were carried out with [P66614][(iC8)2PO2]. Results indicatethat thermal stability is clearly dominated by the coordination ability of the anion, with [P66614][NTf2] out-performing the other ones in both pyrolytic and oxidising conditions. Although the thermal degradationmechanism is affected by atmospheric conditions, the degradation trend remains practically constant.As the dynamic methodology usually overestimates the long-term thermal stability, an isoconversionalmethodology is better for predicting the long-term thermal stability of these ionic liquids in order to beused as base oil or additive in lubricants formulation. Finally, the model-free methodology can predict atlower costs the ILs performance in isothermal conditions

    Soft Ionization of Thermally Evaporated Hypergolic Ionic Liquid Aerosols

    Get PDF
    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?]ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources

    Heats of vaporization of room temperature ionic liquids by tunable vacuum ultraviolet photoionization

    No full text
    The heats of vaporization of the room temperature ionic liquids (RTILs) N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide, N-butyl-N-methylpyrrolidinium dicyanamide, and 1-butyl-3-methylimidazolium dicyanamide are determined using a heated effusive vapor source in conjunction with single photon ionization by a tunable vacuum ultraviolet synchrotron source. The relative gas phase ionic liquid vapor densities in the effusive beam are monitored by clearly distinguished dissociative photoionization processes via a time-of-flight mass spectrometer at a tunable vacuum ultraviolet beamline 9.0.2.3 (Chemical Dynamics Beamline) at the Advanced Light Source synchrotron facility. Resulting in relatively few assumptions, through the analysis of both parent cations and fragment cations, the heat of vaporization of N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide is determined to be Delta Hvap(298.15 K) = 195+-19 kJ mol-1. The observed heats of vaporization of 1-butyl-3-methylimidazolium dicyanamide (Delta Hvap(298.15 K) = 174+-12 kJ mol-1) and N-butyl-N-methylpyrrolidinium dicyanamide (Delta Hvap(298.15 K) = 171+-12 kJ mol-1) are consistent with reported experimental values using electron impact ionization. The tunable vacuum ultraviolet source has enabled accurate measurement of photoion appearance energies. These appearance energies are in good agreement with MP2 calculations for dissociative photoionization of the ion pair. These experimental heats of vaporization, photoion appearance energies, and ab initio calculations corroborate vaporization of these RTILs as intact cation-anion ion pairs
    corecore