379 research outputs found

    Modeling Inflation Using a Non-Equilibrium Equation of Exchange

    Get PDF
    Inflation is a change in the prices of goods that takes place without changes in the actual values of those goods. The Equation of Exchange, formulated clearly in a seminal paper by Irving Fisher in 1911, establishes an equilibrium relationship between the price index P (also known as "inflation"), the economy's aggregate output Q (also known as "the real gross domestic product"), the amount of money available for spending M (also known as "the money supply"), and the rate at which money is reused V (also known as "the velocity of circulation of money"). This paper offers first a qualitative discussion of what can cause these factors to change and how those causes might be controlled, then develops a quantitative model of inflation based on a non-equilibrium version of the Equation of Exchange. Causal relationships are different from equations in that the effects of changes in the causal variables take time to play out-often significant amounts of time. In the model described here, wages track prices, but only after a distributed lag. Prices change whenever the money supply, aggregate output, or the velocity of circulation of money change, but only after a distributed lag. Similarly, the money supply depends on the supplies of domestic and foreign money, which depend on the monetary base and a variety of foreign transactions, respectively. The spreading of delays mitigates the shocks of sudden changes to important inputs, but the most important aspect of this model is that delays, which often have dramatic consequences in dynamic systems, are explicitly incorporated.macroeconomics, inflation, equation of exchange, non-equilibrium, Athena Projec

    Management issues in systems engineering

    Get PDF
    When applied to a system, the doctrine of successive refinement is a divide-and-conquer strategy. Complex systems are sucessively divided into pieces that are less complex, until they are simple enough to be conquered. This decomposition results in several structures for describing the product system and the producing system. These structures play important roles in systems engineering and project management. Many of the remaining sections in this chapter are devoted to describing some of these key structures. Structures that describe the product system include, but are not limited to, the requirements tree, system architecture and certain symbolic information such as system drawings, schematics, and data bases. The structures that describe the producing system include the project's work breakdown, schedules, cost accounts and organization

    Athena in 2013 and Beyond

    Get PDF
    TRISA, the U.S. Army TRADOC G2 Intelligence Support Activity, received Athena 1 in 2009. They first used Athena 3 to support studies in 2011. This paper describes Athena 4, which they started using in October 2012. A final section discusses issues that are being considered for incorporation into Athena 5 and later. Athena's objective is to help skilled intelligence analysts anticipate the likely consequences of complex courses of action that use our country's entire power base, not just our military capabilities, for operations in troubled regions of the world. Measures of effectiveness emphasize who is in control and the effects of our actions on the attitudes and well-being of civilians. The planning horizon encompasses not weeks or months, but years. Athena is a scalable, laptop-based simulation with weekly resolution. Up to three months of simulated time can pass between game turns that require user interaction. Athena's geographic scope is nominally a country, but can be a region within a county. Geographic resolution is "neighborhoods", which are defined by the user and may be actual neighborhoods, provinces, or anything in between. Models encompass phenomena whose effects are expected to be relevant over a medium-term planning horizon-three months to three years. The scope and intrinsic complexity of the problem dictate a spiral development process. That is, the model is used during development and lessons learned are used to improve the model. Even more important is that while every version must consider the "big picture" at some level of detail, development priority is given to those issues that are most relevant to currently anticipated studies. For example, models of the delivery and effectiveness of information operations messaging were among the additions in Athena 4

    Communications Biophysics

    Get PDF
    Contains reports on four research projects.National Institutes of Health (Grant 1 P01 GM-14940-02)Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E)National Institutes of Health (Grant 5 TO1 GM-01555-02

    Athena

    Get PDF
    The Athena simulation software supports an analyst from DoD or other federal agency in making stability and reconstruction projections for operational analyses in areas like Iraq or Afghanistan. It encompasses the use of all elements of national power: diplomatic, information, military, and economic (DIME), and anticipates their effects on political, military, economic, social, information, and infrastructure (PMESII) variables in real-world battle space environments. Athena is a stand-alone model that provides analysts with insights into the effectiveness of complex operations by anticipating second-, third-, and higher-order effects. For example, the first-order effect of executing a curfew may be to reduce insurgent activity, but it may also reduce consumer spending and keep workers home as second-order effects. Reduced spending and reduced labor may reduce the gross domestic product (GDP) as a third-order effect. Damage to the economy will have further consequences. The Athena approach has also been considered for application in studies related to climate change and the smart grid. It can be applied to any project where the impacts on the population and their perceptions are important, and where population perception is important to the success of the project

    Opinion: hazards faced by macromolecules when confined to thin aqueous films

    Get PDF
    Samples prepared for single-particle electron cryo-microscopy (cryo-EM) necessarily have a very high surface-to-volume ratio during the short period of time between thinning and vitrification. During this time, there is an obvious risk that macromolecules of interest may adsorb to the air-water interface with a preferred orientation, or that they may even become partially or fully unfolded at the interface. In addition, adsorption of macromolecules to an air-water interface may occur even before thinning. This paper addresses the question whether currently used methods of sample preparation might be improved if one could avoid such interfacial interactions. One possible way to do so might be to preemptively form a surfactant monolayer over the air-water interfaces, to serve as a structure-friendly slide and coverslip. An alternative is to immobilize particles of interest by binding them to some type of support film, which-to continue using the analogy-thus serves as a slide. In this case, the goal is not only to prevent the particles of interest from diffusing into contact with the air-water interface but also to increase the number of particles seen in each image. In this direction, it is natural to think of developing various types of affinity grids as structure-friendly alternatives to thin carbon films. Perhaps ironically, if precautions are not taken against adsorption of particles to air-water interfaces, sacrificial monolayers of denatured protein may take the roles of slide, coverslip, or even both

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Predicting microbiologically defined infection in febrile neutropenic episodes in children : global individual participant data multivariable meta-analysis

    Get PDF
    BACKGROUND: Risk-stratified management of fever with neutropenia (FN), allows intensive management of high-risk cases and early discharge of low-risk cases. No single, internationally validated, prediction model of the risk of adverse outcomes exists for children and young people. An individual patient data (IPD) meta-analysis was undertaken to devise one. METHODS: The 'Predicting Infectious Complications in Children with Cancer' (PICNICC) collaboration was formed by parent representatives, international clinical and methodological experts. Univariable and multivariable analyses, using random effects logistic regression, were undertaken to derive and internally validate a risk-prediction model for outcomes of episodes of FN based on clinical and laboratory data at presentation. RESULTS: Data came from 22 different study groups from 15 countries, of 5127 episodes of FN in 3504 patients. There were 1070 episodes in 616 patients from seven studies available for multivariable analysis. Univariable analyses showed associations with microbiologically defined infection (MDI) in many items, including higher temperature, lower white cell counts and acute myeloid leukaemia, but not age. Patients with osteosarcoma/Ewings sarcoma and those with more severe mucositis were associated with a decreased risk of MDI. The predictive model included: malignancy type, temperature, clinically 'severely unwell', haemoglobin, white cell count and absolute monocyte count. It showed moderate discrimination (AUROC 0.723, 95% confidence interval 0.711-0.759) and good calibration (calibration slope 0.95). The model was robust to bootstrap and cross-validation sensitivity analyses. CONCLUSIONS: This new prediction model for risk of MDI appears accurate. It requires prospective studies assessing implementation to assist clinicians and parents/patients in individualised decision making
    corecore