3,354 research outputs found

    The effects of magnetic field on the d-density wave order in the cuprates

    Full text link
    We consider the effects of a perpendicular magnetic field on the d-density wave order and conclude that if the pseudogap phase in the cuprates is due to this order, then it is highly insensitive to the magnetic field in the underdoped regime, while its sensitivity increases as the gap vanishes in the overdoped regime. This appears to be consistent with the available experiments and can be tested further in neutron scattering experiments. We also investigate the nature of the de Haas- van Alphen effect in the ordered state and discuss the possibility of observing it.Comment: 5 pages, 4 eps figures, RevTex4. Corrected a silly but important typo in the abstrac

    Effects of antiferromagnetic planes on the superconducting properties of multilayered high-Tc cuprates

    Get PDF
    We propose a mechanism for high critical temperature (T_c) in the coexistent phase of superconducting- (SC) and antiferromagnetic (AF) CuO_2 planes in multilayered cuprates. The Josephson coupling between the SC planes separated by an AF insulator (Mott insulator) is calculated perturbatively up to the fourth order in terms of the hopping integral between adjacent CuO_2 planes. It is shown that the AF exchange splitting in the AF plane suppresses the so-called pi-Josephson coupling, and the long-ranged 0-Josephson coupling leads to coexistence with a rather high value of T_c.Comment: 4 pages including 4 figure

    Classification of the line-soliton solutions of KPII

    Full text link
    In the previous papers (notably, Y. Kodama, J. Phys. A 37, 11169-11190 (2004), and G. Biondini and S. Chakravarty, J. Math. Phys. 47 033514 (2006)), we found a large variety of line-soliton solutions of the Kadomtsev-Petviashvili II (KPII) equation. The line-soliton solutions are solitary waves which decay exponentially in (x,y)(x,y)-plane except along certain rays. In this paper, we show that those solutions are classified by asymptotic information of the solution as y|y| \to \infty. Our study then unravels some interesting relations between the line-soliton classification scheme and classical results in the theory of permutations.Comment: 30 page

    The Dielectric Strength of Indian Vegetable Oils

    Get PDF

    The Magnetic Dipole Transitions in the Octahedral Complexes of the Transition Metal Ions

    Get PDF

    Paramagnetic Susceptibilities of the 3dn Octahedral Complexes

    Get PDF

    The NMR relaxation rate of O in undoped Sr_2CuO_2Cl_2: Probing two-dimensional magnons at short distances

    Full text link
    We calculate the nuclear relaxation rate of oxygen in the undoped quasi two-dimensional quantum Heisenberg antiferromagnet Sr_2CuO_2Cl_2 above the Neel temperature. The calculation is performed at two-loop order with the help of the Dyson-Maleev formulation of the spin-wave expansion, taking all scattering processes involving two and three magnons into account. At low temperatures T we find 1 / T_1 = c_1 T^3 + c_2 T^4 + O (T^5), and give explicit expressions for the coefficients c_1 (two-magnon scattering) and c_2 (three magnon scattering). We compare our result with a recent experiment by Thurber et al. and show that this experiment directly probes the existence of short-wavelength magnons in a two-dimensional antiferromagnet.Comment: Final version, to appear in Phys. Rev. B (1 August 1997

    Sharp signature of DDW quantum critical point in the Hall coefficient of the cuprates

    Full text link
    We study the behavior of the Hall coefficient, RHR_H, in a system exhibiting dx2y2d_{{x^2}-{y^2}} density-wave (DDW) order in a regime in which the carrier concentration, xx, is tuned to approach a quantum critical point at which the order is destroyed. At the mean-field level, we find that nHall=1/RHn_{\rm Hall}=1/R_H evinces a sharp signature of the transition. There is a kink in nHalln_{\rm Hall} at the critical value of the carrier concentration, xcx_c; as the critical point is approached from the ordered side, the slope of nHalln_{\rm Hall} diverges. Hall transport experiments in the cuprates, at high magnetic fields sufficient to destroy superconductivity, should reveal this effect.Comment: 5 pages, 2 eps figure

    Monopole Flux State on the Pyrochlore Lattice

    Full text link
    The ground state of a spin 1/2 nearest neighbor quantum Heisenberg antiferromagnet on the pyrochlore lattice is investigated using a large NN SU(N) fermionic mean field theory. We find several mean field states, of which the state of lowest energy upon Gutzwiller projection, is a parity and time reversal breaking chiral phase with a unit monopole flux exiting each tetrahedron. This "monopole flux" state has a Fermi surface consisting of 4 lines intersecting at a point. At mean field the low-energy excitations about the Fermi surface are gapless spinons. An analysis using the projective symmetry group of this state suggests that the state is stable to small fluctuations which neither induce a gap, nor alter the unusual Fermi surface

    Drag resistance of 2D electronic microemulsions

    Full text link
    Motivated by recent experiments of Pillarisetty {\it et al}, \prl {\bf 90}, 226801 (2003), we present a theory of drag in electronic double layers at low electron concentration. We show that the drag effect in such systems is anomolously large, it has unusual temperature and magnetic field dependences accociated with the Pomeranchuk effect, and does not vanish at zero temperature
    corecore