956 research outputs found

    Flapper Valve Steels With High Performance

    Get PDF

    Wheat-Maize Intercropping With Reduced Tillage and Straw Retention: A Step Towards Enhancing Economic and Environmental Benefits in Arid Areas

    Get PDF
    Intercropping is considered a promising system for boosting crop productivity. However, intercropping usually requires higher inputs of resources that emit more CO2. It is unclear whether an improved agricultural pattern could relieve this issue and enhance agricultural sustainability in an arid irrigation area. A field experiment using a well-designed agricultural practice was carried out in northwest China; reduced tillage, coupled with wheat straw residue retention measures, was integrated with a strip intercropping pattern. We determined the crop productivity, water use, economic benefits, and carbon emissions (CEs). The wheat-maize intercropping coupled with straw covering (i.e., NTSI treatment), boosted grain yield by 27–38% and 153–160% more than the conventional monoculture of maize and wheat, respectively, and it also increased by 9.9–11.9% over the conventional intercropping treatment. Similarly, this pattern also improved the water use efficiency by 15.4–22.4% in comparison with the conventional monoculture of maize by 45.7–48.3% in comparison with the conventional monoculture of wheat and by 14.7–15.9% in comparison with the conventional intercropping treatment. Meanwhile, NTSI treatment caused 7.4–13.7% and 37.0–47.7% greater solar energy use efficiency than the conventional monoculture of maize and wheat, respectively. Furthermore, the NTSI treatment had a higher net return (NR) by 54–71% and 281–338% and a higher benefit per cubic meter of water (BPW) by 35–51% and 119–147% more than the conventional monoculture of maize and wheat, respectively. Similarly, it increased the NR and BPW by 8–14% and 14–16% in comparison with the conventional intercropping treatment, respectively. An additional feature of the NTSI treatment is that it reduced CEs by 13.4–23.8% and 7.3–17.5% while improving CE efficiency by 62.6–66.9% and 23.2–33.2% more than the conventional monoculture maize and intercropping treatments, respectively. We can draw a conclusion that intercropping maize and wheat, with a straw covering soil surface, can be used to enhance crop production and NRs while effectively lowering CO2 emissions in arid oasis irrigation region

    Fluorescent nanoparticles for sensing

    Full text link
    Nanoparticle-based fluorescent sensors have emerged as a competitive alternative to small molecule sensors, due to their excellent fluorescence-based sensing capabilities. The tailorability of design, architecture, and photophysical properties has attracted the attention of many research groups, resulting in numerous reports related to novel nanosensors applied in sensing a vast variety of biological analytes. Although semiconducting quantum dots have been the best-known representative of fluorescent nanoparticles for a long time, the increasing popularity of new classes of organic nanoparticle-based sensors, such as carbon dots and polymeric nanoparticles, is due to their biocompatibility, ease of synthesis, and biofunctionalization capabilities. For instance, fluorescent gold and silver nanoclusters have emerged as a less cytotoxic replacement for semiconducting quantum dot sensors. This chapter provides an overview of recent developments in nanoparticle-based sensors for chemical and biological sensing and includes a discussion on unique properties of nanoparticles of different composition, along with their basic mechanism of fluorescence, route of synthesis, and their advantages and limitations

    Sustained proliferation in cancer: mechanisms and novel therapeutic targets

    Get PDF
    Proliferation is an important part of cancer development and progression. This is manifest by altered expression and/or activity of cell cycle related proteins. Constitutive activation of many signal transduction pathways also stimulates cell growth. Early steps in tumor development are associated with a fibrogenic response and the development of a hypoxic environment which favors the survival and proliferation of cancer stem cells. Part of the survival strategy of cancer stem cells may manifested by alterations in cell metabolism. Once tumors appear, growth and metastasis may be supported by overproduction of appropriate hormones (in hormonally dependent cancers), by promoting angiogenesis, by undergoing epithelial to mesenchymal transition, by triggering autophagy, and by taking cues from surrounding stromal cells. A number of natural compounds (e.g., curcumin, resveratrol, indole-3-carbinol, brassinin, sulforaphane, epigallocatechin-3-gallate, genistein, ellagitannins, lycopene and quercetin) have been found to inhibit one or more pathways that contribute to proliferation (e.g., hypoxia inducible factor 1, nuclear factor kappa B, phosphoinositide 3 kinase/Akt, insulin-like growth factor receptor 1, Wnt, cell cycle associated proteins, as well as androgen and estrogen receptor signaling). These data, in combination with bioinformatics analyses, will be very important for identifying signaling pathways and molecular targets that may provide early diagnostic markers and/or critical targets for the development of new drugs or drug combinations that block tumor formation and progression

    Study of J/ψJ/\psi and ψ(3686)→Σ(1385)0Σˉ(1385)0\psi(3686)\rightarrow\Sigma(1385)^{0}\bar\Sigma(1385)^{0} and Ξ0Ξˉ0\Xi^0\bar\Xi^{0}

    Full text link
    We study the decays of J/ψJ/\psi and ψ(3686)\psi(3686) to the final states Σ(1385)0Σˉ(1385)0\Sigma(1385)^{0}\bar\Sigma(1385)^{0} and Ξ0Ξˉ0\Xi^0\bar\Xi^{0} based on a single baryon tag method using data samples of (1310.6±7.0)×106(1310.6 \pm 7.0) \times 10^{6} J/ψJ/\psi and (447.9±2.9)×106(447.9 \pm 2.9) \times 10^{6} ψ(3686)\psi(3686) events collected with the BESIII detector at the BEPCII collider. The decays to Σ(1385)0Σˉ(1385)0\Sigma(1385)^{0}\bar\Sigma(1385)^{0} are observed for the first time. The measured branching fractions of J/ψJ/\psi and ψ(3686)→Ξ0Ξˉ0\psi(3686)\rightarrow\Xi^0\bar\Xi^{0} are in good agreement with, and much more precise, than the previously published results. The angular parameters for these decays are also measured for the first time. The measured angular decay parameter for J/ψ→Σ(1385)0Σˉ(1385)0J/\psi\rightarrow\Sigma(1385)^{0}\bar\Sigma(1385)^{0}, α=−0.64±0.03±0.10\alpha =-0.64 \pm 0.03 \pm 0.10, is found to be negative, different to the other decay processes in this measurement. In addition, the "12\% rule" and isospin symmetry in the J/ψJ/\psi and ψ(3686)→ΞΞˉ\psi(3686)\rightarrow\Xi\bar\Xi and Σ(1385)Σˉ(1385)\Sigma(1385)\bar{\Sigma}(1385) systems are tested.Comment: 11 pages, 7 figures. This version is consistent with paper published in Phys.Lett. B770 (2017) 217-22
    • …
    corecore