10,374 research outputs found

    Observation of Damage Growth in Compressively Loaded Laminates

    Get PDF
    An experimental program to determine tie phenomenological aspects of composite-panel failure under simultaneous compressive n-plane loading and low-velocity transverse impact [C-75 m/s (0-250 ft/s)] is described. High-speed photography coupled with the shadow-moiré technique is used to record the phenomenon of failure propagation. The information gained from these records, supplemented by plate sectioning and observation for interior damage, has provided information regarding the failure-propagation mechanism. The results show that the failure process can be divided roughly into two phases. In the first phase the plane is impacted, and the resulting response causes interlaminar separation. In the second phase the local damage spreads to the undamaged portion of the plate through a combination of laminae buckling and further delamination

    One dimensional modelling of failure in laminated plates by delamination buckling

    Get PDF
    When low speed objects impact composite laminated plates delamination may result. Under inplane compression such delaminations may buckle and tend to enlarge the delaminated area which can lead to loss of global plate stability. This process is modelled here in a first attempt by a delaminating beam-column wherein the local delamination growth, stability and arrest are governed by a fracture mechanics-based energy release rate criterion

    Olfaction Contributes to Pelagic Navigation in a Coastal Shark.

    Get PDF
    How animals navigate the constantly moving and visually uniform pelagic realm, often along straight paths between distant sites, is an enduring mystery. The mechanisms enabling pelagic navigation in cartilaginous fishes are particularly understudied. We used shoreward navigation by leopard sharks (Triakis semifasciata) as a model system to test whether olfaction contributes to pelagic navigation. Leopard sharks were captured alongshore, transported 9 km offshore, released, and acoustically tracked for approximately 4 h each until the transmitter released. Eleven sharks were rendered anosmic (nares occluded with cotton wool soaked in petroleum jelly); fifteen were sham controls. Mean swimming depth was 28.7 m. On average, tracks of control sharks ended 62.6% closer to shore, following relatively straight paths that were significantly directed over spatial scales exceeding 1600 m. In contrast, tracks of anosmic sharks ended 37.2% closer to shore, following significantly more tortuous paths that approximated correlated random walks. These results held after swimming paths were adjusted for current drift. This is the first study to demonstrate experimentally that olfaction contributes to pelagic navigation in sharks, likely mediated by chemical gradients as has been hypothesized for birds. Given the similarities between the fluid three-dimensional chemical atmosphere and ocean, further research comparing swimming and flying animals may lead to a unifying paradigm explaining their extraordinary navigational abilities

    JPL Energy Consumption Program (ECP) documentation: A computer model simulating heating, cooling and energy loads in buildings

    Get PDF
    The engineering manual provides a complete companion documentation about the structure of the main program and subroutines, the preparation of input data, the interpretation of output results, access and use of the program, and the detailed description of all the analytic, logical expressions and flow charts used in computations and program structure. A numerical example is provided and solved completely to show the sequence of computations followed. The program is carefully structured to reduce both user's time and costs without sacrificing accuracy. The user would expect a cost of CPU time of approximately $5.00 per building zone excluding printing costs. The accuracy, on the other hand, measured by deviation of simulated consumption from watt-hour meter readings, was found by many simulation tests not to exceed + or - 10 percent margin

    Isometric Finger Pose Recognition with Sparse Channel SpatioTemporal EMG Imaging

    Full text link
    © 2018 IEEE. High fidelity myoelectric control of prostheses and orthoses isparamount to restoring lost function to amputees and neuro-muscular disease sufferers. In this study we prove that patio-temporal imaging can be used to allow convolutional neural networks to classify sparse channel EMG samples from a consumer-grade device with over 94% accuracy. 10,572 images are generated from 960 samples of simple and complex isometric finger poses recorded from 4 fully intact subjects. Real-time classification of 12 poses is achieved with a 250ms continuous overlapping window
    corecore