75 research outputs found

    Breaking barriers: Scientific contributions in virology from women in low- and middle-income countries

    Get PDF
    The advancement of science has been a collective effort and benefits from a diversity of views and gender representation. However, support for and recognition of women in science is often insufficient. Despite historically being marginalized by the scientific community, research by women has advanced the field of virology, from the discovery of rotavirus and isolation of human immunodeficiency virus (HIV) to a vaccine for polio and the initial description of a virus’ ability to cause cancer. Although women in science, technology, engineering, and mathematics (STEM) fields are continuing to share their diverse wealth of knowledge and innovation, even today many are under-recognized and under-supported in low- and middle-income countries (LMICs). This review will highlight women in virology from LMICs in Africa, Asia, and Latin America where the barriers to scientific education and achievement for women can be far greater than in high income countries. Despite these barriers, the women we profile below have made important contributions to translational virology. We hope this review will contribute to the global expansion of efforts to provide improved access to and retention in scientific careers for women

    Elimination of SHIV Infected Cells by Combinations of Bispecific HIVxCD3 DARTÂź Molecules

    Get PDF
    Bispecific HIVxCD3 DART molecules that co-engage the viral envelope glycoprotein (Env) on HIV-1-infected cells and the CD3 receptor on CD3+ T cells are designed to mediate the cytolysis of HIV-1-infected, Env-expressing cells. Using a novel ex vivo system with cells from rhesus macaques (RMs) infected with a chimeric Simian-Human Immunodeficiency Virus (SHIV) CH505 and maintained on ART, we tested the ability of HIVxCD3 DART molecules to mediate elimination of in vitro-reactivated CD4+ T cells in the absence or presence of autologous CD8+ T cells. HIVxCD3 DART molecules with the anti-HIV-1 Env specificities of A32 or 7B2 (non-neutralizing antibodies) or PGT145 (broadly neutralizing antibody) were evaluated individually or combined. DART molecule-mediated antiviral activity increased significantly in the presence of autologous CD8+ T cells. In this ex vivo system, the PGT145 DART molecule was more active than the 7B2 DART molecule, which was more active than the A32 DART molecule. A triple combination of the DART molecules exceeded the activity of the individual PGT145 DART molecule. Modified quantitative virus outgrowth assays confirmed the ability of the DART molecules to redirect RM CD3+ T cells to eliminate SHIV-infected RM CD4+ T cells as demonstrated by the decreased propagation of in vitro infection by the infected cells pre-incubated with DART molecules in presence of effector CD8+ T cells. While mediating cytotoxic activity, DART molecules did not increase proinflammatory cytokine production. In summary, combination of HIVxCD3 DART molecules that have broadly-neutralizing and non-neutralizing anti-HIV-1 Env specificities can leverage the host immune system for treatment of HIV-1 infection but will require appropriate reactivation of the latent reservoir

    CD8 Lymphocyte Depletion Enhances the Latency Reversal Activity of the SMAC Mimetic AZD5582 in ART-Suppressed Simian Immunodeficiency Virus-Infected Rhesus Macaques

    Get PDF
    Inducing latency reversal to reveal infected cells to the host immune system represents a potential strategy to cure HIV infection. In separate studies, we have previously shown that CD8+ T cells may contribute to the maintenance of viral latency and identified a novel SMAC mimetic/IAP inhibitor (AZD5582) capable of reversing HIV/SIV latency in vivo by activating the non-canonical (nc) NF-ÎșB pathway. Here, we use AZD5582 in combination with antibody-mediated depletion of CD8α+ cells to further evaluate the role of CD8+ T cells in viral latency maintenance. Six rhesus macaques (RM) were infected with SIVmac239 and treated with ART starting at week 8 post-infection. After 84-85 weeks of ART, all animals received a single dose of the anti-CD8α depleting antibody (Ab), MT807R1 (50mg/kg, s.c.), followed by 5 weekly doses of AZD5582 (0.1 mg/kg, i.v.). Following CD8α depletion + AZD5582 combined treatment, 100% of RMs experienced on-ART viremia above 60 copies per ml of plasma. In comparator groups of ART-suppressed SIV-infected RMs treated with AZD5582 only or CD8α depletion only, on-ART viremia was experienced by 56% and 57% of the animals respectively. Furthermore, the frequency of increased viremic episodes during the treatment period was greater in the CD8α depletion + AZD5582 group as compared to other groups. Mathematical modeling of virus reactivation suggested that, in addition to viral dynamics during acute infection, CD8α depletion influenced the response to AZD5582. This work suggests that the latency reversal induced by activation of the ncNF-ÎșB signaling pathway with AZD5582 can be enhanced by CD8α+ cell depletion

    AZD5582 plus SIV-specific antibodies reduce lymph node viral reservoirs in antiretroviral therapy-suppressed macaques

    Get PDF
    The main barrier to HIV cure is a persistent reservoir of latently infected CD4+ T cells harboring replication-competent provirus that fuels rebound viremia upon antiretroviral therapy (ART) interruption. A leading approach to target this reservoir involves agents that reactivate latent HIV proviruses followed by direct clearance of cells expressing induced viral antigens by immune effector cells and immunotherapeutics. We previously showed that AZD5582, an antagonist of inhibitor of apoptosis proteins and mimetic of the second mitochondrial-derived activator of caspases (IAPi/SMACm), induces systemic reversal of HIV/SIV latency but with no reduction in size of the viral reservoir. In this study, we investigated the effects of AZD5582 in combination with four SIV Env-specific Rhesus monoclonal antibodies (RhmAbs) ± N-803 (an IL-15 superagonist) in SIV-infected, ART-suppressed rhesus macaques. Here we confirm the efficacy of AZD5582 in inducing SIV reactivation, demonstrate enhancement of latency reversal when AZD5582 is used in combination with N-803 and show a reduction in total and replication-competent SIV-DNA in lymph-node-derived CD4+ T cells in macaques treated with AZD5582 + RhmAbs. Further exploration of this therapeutic approach may contribute to the goal of achieving an HIV cure

    Sooty Mangabey Genome Sequence Provides Insight into AIDS Resistance in a Natural SIV Host

    Get PDF
    In contrast to infections with human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques, SIV infection of a natural host, sooty mangabeys (Cercocebus atys), is non-pathogenic despite high viraemia. Here we sequenced and assembled the genome of a captive sooty mangabey. We conducted genome-wide comparative analyses of transcript assemblies from C. atys and AIDS-susceptible species, such as humans and macaques, to identify candidates for host genetic factors that influence susceptibility. We identified several immune-related genes in the genome of C. atys that show substantial sequence divergence from macaques or humans. One of these sequence divergences, a C-terminal frameshift in the toll-like receptor-4 (TLR4) gene of C. atys, is associated with a blunted in vitro response to TLR-4 ligands. In addition, we found a major structural change in exons 3-4 of the immune-regulatory protein intercellular adhesion molecule 2 (ICAM-2); expression of this variant leads to reduced cell surface expression of ICAM-2. These data provide a resource for comparative genomic studies of HIV and/or SIV pathogenesis and may help to elucidate the mechanisms by which SIV-infected sooty mangabeys avoid AIDS

    Systemic HIV and SIV latency reversal via non-canonical NF-ÎșB signalling in vivo

    Get PDF
    Long-lasting, latently infected resting CD4+ T cells are the greatest obstacle to obtaining a cure for HIV infection, as these cells can persist despite decades of treatment with antiretroviral therapy (ART). Estimates indicate that more than 70 years of continuous, fully suppressive ART are needed to eliminate the HIV reservoir1. Alternatively, induction of HIV from its latent state could accelerate the decrease in the reservoir, thus reducing the time to eradication. Previous attempts to reactivate latent HIV in preclinical animal models and in clinical trials have measured HIV induction in the peripheral blood with minimal focus on tissue reservoirs and have had limited effect2–9. Here we show that activation of the non-canonical NF-ÎșB signalling pathway by AZD5582 results in the induction of HIV and SIV RNA expression in the blood and tissues of ART-suppressed bone-marrow–liver–thymus (BLT) humanized mice and rhesus macaques infected with HIV and SIV, respectively. Analysis of resting CD4+ T cells from tissues after AZD5582 treatment revealed increased SIV RNA expression in the lymph nodes of macaques and robust induction of HIV in almost all tissues analysed in humanized mice, including the lymph nodes, thymus, bone marrow, liver and lung. This promising approach to latency reversal—in combination with appropriate tools for systemic clearance of persistent HIV infection—greatly increases opportunities for HIV eradication

    Robust and persistent reactivation of SIV and HIV by N-803 and depletion of CD8+ cells

    Get PDF
    Human immunodeficiency virus (HIV) persists indefinitely in individuals with HIV who receive antiretroviral therapy (ART) owing to a reservoir of latently infected cells that contain replication-competent virus1–4. Here, to better understand the mechanisms responsible for latency persistence and reversal, we used the interleukin-15 superagonist N-803 in conjunction with the depletion of CD8+ lymphocytes in ART-treated macaques infected with simian immunodeficiency virus (SIV). Although N-803 alone did not reactivate virus production, its administration after the depletion of CD8+ lymphocytes in conjunction with ART treatment induced robust and persistent reactivation of the virus in vivo. We found viraemia of more than 60 copies per ml in all macaques (n = 14; 100%) and in 41 out of a total of 56 samples (73.2%) that were collected each week after N-803 administration. Notably, concordant results were obtained in ART-treated HIV-infected humanized mice. In addition, we observed that co-culture with CD8+ T cells blocked the in vitro latency-reversing effect of N-803 on primary human CD4+ T cells that were latently infected with HIV. These results advance our understanding of the mechanisms responsible for latency reversal and lentivirus reactivation during ART-suppressed infection

    Clinical and Preclinical Evidence for Adverse Neurodevelopment after Postnatal Zika Virus Infection

    No full text
    Although the Zika virus (ZIKV) typically causes mild or no symptoms in adults, during the 2015−2016 outbreak, ZIKV infection in pregnancy resulted in a spectrum of diseases in infants, including birth defects and neurodevelopmental disorders identified in childhood. While intense clinical and basic science research has focused on the neurodevelopmental outcomes of prenatal ZIKV infection, less is known about the consequences of infection during early life. Considering the neurotropism of ZIKV and the rapidly-developing postnatal brain, it is important to understand how infection during infancy may disrupt neurodevelopment. This paper reviews the current knowledge regarding early postnatal ZIKV infection. Emerging clinical evidence supports the hypothesis that ZIKV infection during infancy can result in negative neurologic consequences. However, clinical data regarding postnatal ZIKV infection in children are limited; as such, animal models play an important role in understanding the potential complications of ZIKV infection related to the vulnerable developing brain. Preclinical data provide insight into the potential behavioral, cognitive, and motor domains that clinical studies should examine in pediatric populations exposed to ZIKV during infancy

    Clinical and Preclinical Evidence for Adverse Neurodevelopment after Postnatal Zika Virus Infection

    No full text
    Although the Zika virus (ZIKV) typically causes mild or no symptoms in adults, during the 2015−2016 outbreak, ZIKV infection in pregnancy resulted in a spectrum of diseases in infants, including birth defects and neurodevelopmental disorders identified in childhood. While intense clinical and basic science research has focused on the neurodevelopmental outcomes of prenatal ZIKV infection, less is known about the consequences of infection during early life. Considering the neurotropism of ZIKV and the rapidly-developing postnatal brain, it is important to understand how infection during infancy may disrupt neurodevelopment. This paper reviews the current knowledge regarding early postnatal ZIKV infection. Emerging clinical evidence supports the hypothesis that ZIKV infection during infancy can result in negative neurologic consequences. However, clinical data regarding postnatal ZIKV infection in children are limited; as such, animal models play an important role in understanding the potential complications of ZIKV infection related to the vulnerable developing brain. Preclinical data provide insight into the potential behavioral, cognitive, and motor domains that clinical studies should examine in pediatric populations exposed to ZIKV during infancy

    New Latency Reversing Agents for HIV-1 Cure: Insights from Nonhuman Primate Models

    No full text
    Antiretroviral therapy (ART) controls human immunodeficiency virus 1 (HIV-1) replication and prevents disease progression but does not eradicate HIV-1. The persistence of a reservoir of latently infected cells represents the main barrier to a cure. “Shock and kill” is a promising strategy involving latency reversing agents (LRAs) to reactivate HIV-1 from latently infected cells, thus exposing the infected cells to killing by the immune system or clearance agents. Here, we review advances to the “shock and kill” strategy made through the nonhuman primate (NHP) model, highlighting recently identified latency reversing agents and approaches such as mimetics of the second mitochondrial activator of caspase (SMACm), experimental CD8+ T cell depletion, immune checkpoint blockade (ICI), and toll-like receptor (TLR) agonists. We also discuss the advantages and limits of the NHP model for HIV cure research and methods developed to evaluate the efficacy of in vivo treatment with LRAs in NHPs
    • 

    corecore