41 research outputs found
Effect of age and cytoskeletal elements on the indentation-dependent mechanical properties of chondrocytes.
Articular cartilage chondrocytes are responsible for the synthesis, maintenance, and turnover of the extracellular matrix, metabolic processes that contribute to the mechanical properties of these cells. Here, we systematically evaluated the effect of age and cytoskeletal disruptors on the mechanical properties of chondrocytes as a function of deformation. We quantified the indentation-dependent mechanical properties of chondrocytes isolated from neonatal (1-day), adult (5-year) and geriatric (12-year) bovine knees using atomic force microscopy (AFM). We also measured the contribution of the actin and intermediate filaments to the indentation-dependent mechanical properties of chondrocytes. By integrating AFM with confocal fluorescent microscopy, we monitored cytoskeletal and biomechanical deformation in transgenic cells (GFP-vimentin and mCherry-actin) under compression. We found that the elastic modulus of chondrocytes in all age groups decreased with increased indentation (15-2000 nm). The elastic modulus of adult chondrocytes was significantly greater than neonatal cells at indentations greater than 500 nm. Viscoelastic moduli (instantaneous and equilibrium) were comparable in all age groups examined; however, the intrinsic viscosity was lower in geriatric chondrocytes than neonatal. Disrupting the actin or the intermediate filament structures altered the mechanical properties of chondrocytes by decreasing the elastic modulus and viscoelastic properties, resulting in a dramatic loss of indentation-dependent response with treatment. Actin and vimentin cytoskeletal structures were monitored using confocal fluorescent microscopy in transgenic cells treated with disruptors, and both treatments had a profound disruptive effect on the actin filaments. Here we show that disrupting the structure of intermediate filaments indirectly altered the configuration of the actin cytoskeleton. These findings underscore the importance of the cytoskeletal elements in the overall mechanical response of chondrocytes, indicating that intermediate filament integrity is key to the non-linear elastic properties of chondrocytes. This study improves our understanding of the mechanical properties of articular cartilage at the single cell level
Controversies in spine research: organ culture versus in vivo models for studies of the intervertebral disc
Intervertebral disc degeneration is a common cause of low back pain, the leading cause of disability worldwide. Appropriate preclinical models for intervertebral disc research are essential to achieving a better understanding of underlying pathophysiology and for the development, evaluation, and translation of more effective treatments. To this end, in vivo animal and ex vivo organ culture models are both widely used by spine researchers; however, the relative strengths and weaknesses of these two approaches are a source of ongoing controversy. In this article, members from the Spine and Preclinical Models Sections of the Orthopedic Research Society, including experts in both basic and translational spine research, present contrasting arguments in support of in vivo animal models versus ex vivo organ culture models for studies of the disc, supported by a comprehensive review of the relevant literature. The objective is to provide a deeper understanding of the respective advantages and limitations of these approaches, and advance the field toward a consensus with respect to appropriate model selection and implementation. We conclude that complementary use of several model types and leveraging the unique advantages of each is likely to result in the highest impact research in most instances
Harmonization and standardization of nucleus pulposus cell extraction and culture methods
BACKGROUND: In vitro studies using nucleus pulposus (NP) cells are commonly used to investigate disc cell biology and pathogenesis, or to aid in the development of new therapies. However, lab-to-lab variability jeopardizes the much-needed progress in the field. Here, an international group of spine scientists collaborated to standardize extraction and expansion techniques for NP cells to reduce variability, improve comparability between labs and improve utilization of funding and resources.
METHODS: The most commonly applied methods for NP cell extraction, expansion, and re-differentiation were identified using a questionnaire to research groups worldwide. NP cell extraction methods from rat, rabbit, pig, dog, cow, and human NP tissue were experimentally assessed. Expansion and re-differentiation media and techniques were also investigated.
RESULTS: Recommended protocols are provided for extraction, expansion, and re-differentiation of NP cells from common species utilized for NP cell culture.
CONCLUSIONS: This international, multilab and multispecies study identified cell extraction methods for greater cell yield and fewer gene expression changes by applying species-specific pronase usage, 60-100âU/ml collagenase for shorter durations. Recommendations for NP cell expansion, passage number, and many factors driving successful cell culture in different species are also addressed to support harmonization, rigor, and cross-lab comparisons on NP cells worldwide
Computational Modelling of Tissue-Engineered Cartilage Constructs
Cartilage is a fundamental tissue to ensure proper motion between bones and damping of mechanical loads. This tissue often suffers damage and has limited healing capacity due to its avascularity. In order to replace surgery and replacement of joints by metal implants, tissue engineered cartilage is seen as an attractive alternative. These tissues are obtained by seeding chondrocytes or mesenchymal stem cells in scaffolds and are given certain stimuli to improve establishment of mechanical properties similar to the native cartilage. However, tissues with ideal mechanical properties were not obtained yet. Computational models of tissue engineered cartilage growth and remodelling are invaluable to interpret and predict the effects of experimental designs. The current model contribution in the field will be presented in this chapter, with a focus on the response to mechanical stimulation, and the development of fully coupled modelling approaches incorporating simultaneously solute transport and uptake, cell growth, production of extracellular matrix and remodelling of mechanical properties.publishe
Harmonization and standardization of nucleus pulposus cell extraction and culture methods
Background: In vitro studies using nucleus pulposus (NP) cells are commonly used to investigate disc cell biology and pathogenesis, or to aid in the development of new therapies. However, labâtoâlab variability jeopardizes the muchâneeded progress in the field. Here, an international group of spine scientists collaborated to standardize extraction and expansion techniques for NP cells to reduce variability, improve comparability between labs and improve utilization of funding and resources. Methods: The most commonly applied methods for NP cell extraction, expansion, and reâdifferentiation were identified using a questionnaire to research groups worldwide. NP cell extraction methods from rat, rabbit, pig, dog, cow, and human NP tissue were experimentally assessed. Expansion and reâdifferentiation media and techniques were also investigated. Results: Recommended protocols are provided for extraction, expansion, and reâdifferentiation of NP cells from common species utilized for NP cell culture. Conclusions: This international, multilab and multispecies study identified cell extraction methods for greater cell yield and fewer gene expression changes by applying speciesâspecific pronase usage, 60â100 U/ml collagenase for shorter durations. Recommendations for NP cell expansion, passage number, and many factors driving successful cell culture in different species are also addressed to support harmonization, rigor, and crossâlab comparisons on NP cells worldwide
Exploratory study for identifying systemic biomarkers that correlate with pain response in patients with intervertebral disc disorders
Molecular events that drive disc damage and low back pain (LBP) may precede clinical manifestation of disease onset and can cause detrimental long-term effects such as disability. Biomarkers serve as objective molecular indicators of pathological processes. The goal of this study is to identify systemic biochemical factors as predictors of response to treatment of LBP with epidural steroid injection (ESI). Since inflammation plays a pivotal role in LBP, this pilot study investigates the effect of ESI on systemic levels of 48 inflammatory biochemical factors (cytokines, chemokines, and growth factors) and examines the relationship between biochemical factor levels and pain or disability in patients with disc herniation (DH), or other diagnoses (Other Dx) leading to low back pain, which included spinal stenosis (SS) and degenerative disc disease (DDD). Study participants (n = 16) were recruited from a back pain management practice. Pain numerical rating score (NRS), Oswestry Disability Index (ODI), and blood samples were collected pre- and at 7 to 10 days post-treatment. Blood samples were assayed for inflammatory mediators using commercial multiplex assays. Mediator levels were compared pre- and post-treatment to investigate the potential correlations between clinical and biochemical outcomes. Our results indicate that a single ESI significantly decreased systemic levels of SCGF-ÎČ and IL-2. Improvement in pain in all subjects was correlated with changes in chemokines (MCP-1, MIG), hematopoietic progenitor factors (SCGF-ÎČ), and factors that participate in angiogenesis/fibrosis (HGF), nociception (SCF, IFN-α2), and inflammation (IL-6, IL-10, IL-18, TRAIL). Levels of biochemical mediators varied based on diagnosis of LBP, and changes in pain responses and systemic mediators from pre- to post-treatment were dependent on the diagnosis cohort. In the DH cohort, levels of IL-17 and VEGF significantly decreased post-treatment. In the Other Dx cohort, levels of IL-2Rα, IL-3, and SCGF-ÎČ significantly decreased post-treatment. In order to determine whether mediator changes were related to pain, correlations between change in pain scores and change in mediator levels were performed. Subjects with DH demonstrated a profile signature that implicated hematopoiesis factors (SCGF-ÎČ, GM-CSF) in pain response, while subjects with Other Dx demonstrated a biomarker profile that implicated chemokines (MCP-1, MIG) and angiogenic factors (HGF, VEGF) in pain response. Our findings provide evidence that systemic biochemical factors in patients with LBP vary by diagnosis, and pain response to treatment is associated with a unique profile of biochemical responses in each diagnosis group. Future hypothesis-based studies with larger subject cohorts are warranted to confirm the findings of this pilot exploratory study
Inflammation induces irreversible biophysical changes in isolated nucleus pulposus cells.
Intervertebral disc degeneration is accompanied by elevated levels of inflammatory cytokines that have been implicated in disease etiology and matrix degradation. While the effects of inflammatory stimulation on disc cell metabolism have been well-studied, their effects on cell biophysical properties have not been investigated. The hypothesis of this study is that inflammatory stimulation alters the biomechanical properties of isolated disc cells and volume responses to step osmotic loading. Cells from the nucleus pulposus (NP) of bovine discs were isolated and treated with either lipopolysaccharide (LPS), an inflammatory ligand, or with the recombinant cytokine TNF-α for 24 hours. We measured cellular volume regulation responses to osmotic loading either immediately after stimulation or after a 1 week recovery period from the inflammatory stimuli. Cells from each group were tested under step osmotic loading and the transient volume-response was captured via time-lapse microscopy. Volume-responses were analyzed using mixture theory framework to investigate two biomechanical properties of the cell, the intracellular water content and the hydraulic permeability. Intracellular water content did not vary between treatment groups, but hydraulic permeability increased significantly with inflammatory treatment. In the 1 week recovery group, hydraulic permeability remained elevated relative to the untreated recovery control. Cell radius was also significantly increased both after 24 hours of treatment and after 1 week recovery. A significant linear correlation was observed between hydraulic permeability and cell radius in untreated cells at 24 hours and at 1-week recovery, though not in the inflammatory stimulated groups at either time point. This loss of correlation between cell size and hydraulic permeability suggests that regulation of volume change is disrupted irreversibly due to inflammatory stimulation. Inflammatory treated cells exhibited altered F-actin cytoskeleton expression relative to untreated cells. We also found a significant decrease in the expression of aquaporin-1, the predominant water channel in disc NP cells, with inflammatory stimulation. To our knowledge, this is the first study providing evidence that inflammatory stimulation directly alters the mechanobiology of NP cells. The cellular biophysical changes observed in this study are coincident with documented changes in the extracellular matrix induced by inflammation, and may be important in disease etiology