41 research outputs found

    Effect of Algorithm-Based Therapy vs Usual Care on Clinical Success and Serious Adverse Events in Patients with Staphylococcal Bacteremia: A Randomized Clinical Trial

    Get PDF
    Importance: The appropriate duration of antibiotics for staphylococcal bacteremia is unknown. Objective: To test whether an algorithm that defines treatment duration for staphylococcal bacteremia vs standard of care provides noninferior efficacy without increasing severe adverse events. Design, Setting, and Participants: A randomized trial involving adults with staphylococcal bacteremia was conducted at 16 academic medical centers in the United States (n = 15) and Spain (n = 1) from April 2011 to March 2017. Patients were followed up for 42 days beyond end of therapy for those with Staphylococcus aureus and 28 days for those with coagulase-negative staphylococcal bacteremia. Eligible patients were 18 years or older and had 1 or more blood cultures positive for S aureus or coagulase-negative staphylococci. Patients were excluded if they had known or suspected complicated infection at the time of randomization. Interventions: Patients were randomized to algorithm-based therapy (n = 255) or usual practice (n = 254). Diagnostic evaluation, antibiotic selection, and duration of therapy were predefined for the algorithm group, whereas clinicians caring for patients in the usual practice group had unrestricted choice of antibiotics, duration, and other aspects of clinical care. Main Outcomes and Measures: Coprimary outcomes were (1) clinical success, as determined by a blinded adjudication committee and tested for noninferiority within a 15% margin; and (2) serious adverse event rates in the intention-to-treat population, tested for superiority. The prespecified secondary outcome measure, tested for superiority, was antibiotic days among per-protocol patients with simple or uncomplicated bacteremia. Results: Among the 509 patients randomized (mean age, 56.6 [SD, 16.8] years; 226 [44.4%] women), 480 (94.3%) completed the trial. Clinical success was documented in 209 of 255 patients assigned to algorithm-based therapy and 207 of 254 randomized to usual practice (82.0% vs 81.5%; difference, 0.5% [1-sided 97.5% CI, -6.2% to ∞]). Serious adverse events were reported in 32.5% of algorithm-based therapy patients and 28.3% of usual practice patients (difference, 4.2% [95% CI, -3.8% to 12.2%]). Among per-protocol patients with simple or uncomplicated bacteremia, mean duration of therapy was 4.4 days for algorithm-based therapy vs 6.2 days for usual practice (difference, -1.8 days [95% CI, -3.1 to -0.6]). Conclusions and Relevance: Among patients with staphylococcal bacteremia, the use of an algorithm to guide testing and treatment compared with usual care resulted in a noninferior rate of clinical success. Rates of serious adverse events were not significantly different, but interpretation is limited by wide confidence intervals. Further research is needed to assess the utility of the algorithm. Trial Registration: ClinicalTrials.gov Identifier: NCT01191840

    Rhodococcus Bacteremia in Cancer Patients Is Mostly Catheter Related and Associated with Biofilm Formation

    Get PDF
    Rhodococcus is an emerging cause of opportunistic infection in immunocompromised patients, most commonly causing cavitary pneumonia. It has rarely been reported as a cause of isolated bacteremia. However, the relationship between bacteremia and central venous catheter is unknown. Between 2002 and 2010, the characteristics and outcomes of seventeen cancer patients with Rhodococcus bacteremia and indwelling central venous catheters were evaluated. Rhodococcus bacteremias were for the most part (94%) central line-associated bloodstream infection (CLABSI). Most of the bacteremia isolates were Rhodococcus equi (82%). Rhodococcus isolates formed heavy microbial biofilm on the surface of polyurethane catheters, which was reduced completely or partially by antimicrobial lock solution. All CLABSI patients had successful response to catheter removal and antimicrobial therapy. Rhodococcus species should be added to the list of biofilm forming organisms in immunocompromised hosts and most of the Rhodococcus bacteremias in cancer patients are central line associated

    Comparing Molnupiravir to Nirmatrelvir/Ritonavir (Paxlovid) in the Treatment of Mild-to-Moderate COVID-19 in Immunocompromised Cancer Patients

    No full text
    Background: Nirmatrelvir/Ritonavir has been shown to reduce the risk of COVID-19 progression by 88% compared to placebo, while Molnupiravir reduced it by 31%. However, these two agents have not been compared head-to-head. We therefore compared the safety and efficacy of both agents for the treatment of mild-to-moderate COVID-19 in immunocompromised cancer patients. Methods: We identified 240 cancer patients diagnosed with COVID-19 and treated with Molnupiravir or Nirmatrelvir/Ritonavir. Patients were matched using a 1:2 ratio based on age group (18–64 years vs. ≥65) and type of cancer. The collected data included demographics, comorbidities, and treatment outcome. Results: Both groups had comparable characteristics and presenting symptoms. However, dyspnea was more prevalent in the Molnupiravir group, while sore throat was more prevalent in the Nirmatrelvir/Ritonavir group. The rate of disease progression was comparable in both groups by univariate and multivariable analysis. Treatment with Molnupiravir versus Nirmatrelvir/Ritonavir revealed no significant difference in disease progression by multivariable analysis (adjusted OR = 1.31, 95% CI: 0.56–3.14, p = 0.70). Patients who received Nirmatrelvir/Ritonavir, however, were significantly more prone to having drug–drug interactions/adverse events (30% vs. 0%, p < 0.0001). Conclusions: In the treatment of mild-to-moderate COVID-19 in cancer patients, Molnupiravir was comparable to Nirmatrelvir/Ritonavir in preventing progression to severe disease/death and rebound events, and it had a superior safety profile

    Prognostic Value of Procalcitonin, C-Reactive Protein, and Lactate Levels in Emergency Evaluation of Cancer Patients with Suspected Infection

    No full text
    Cancer patients have increased risk of infections, and often present to emergency departments with infection-related problems where physicians must make decisions based on a snapshot of the patient’s condition. Although C-reactive protein, procalcitonin, and lactate are popular biomarkers of sepsis, their use in guiding emergency care of cancer patients with infections is unclear. Using these biomarkers, we created a prediction model for short-term mortality in cancer patients with suspected infection. We retrospectively analyzed all consecutive patients who visited the emergency department of MD Anderson Cancer Center between 1 April 2018 and 30 April 2019. A clinical decision model was developed using multiple logistic regression for various clinical and laboratory biomarkers; coefficients were used to generate a prediction score stratifying patients into four groups according to their 14-day mortality risk. The prediction score had an area under the receiver operating characteristic curve value of 0.88 (95% confidence interval 0.85–0.91) in predicting 14-day mortality. The prediction score also accurately predicted intensive care unit admission and 30-day mortality. Our simple new scoring system for mortality prediction, based on readily available clinical and laboratory data, including procalcitonin, C-reactive protein, and lactate, can be used in emergency departments for cancer patients with suspected infection

    Author Correction: Procalcitonin Guiding Antimicrobial Therapy Duration in Febrile Cancer Patients with Documented Infection or Neutropenia

    No full text
    A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper

    Caprylic and Polygalacturonic Acid Combinations for Eradication of Microbial Organisms Embedded in Biofilm

    No full text
    There is a need for non-antibiotic, antimicrobial compositions with low toxicity capable of broad-spectrum eradication of pathogenic biofilms in food preparation and healthcare settings. In this study we demonstrated complete biofilm eradication within 60 min with synergistic combinations of caprylic and polygalacturonic (PG) acids in an in vitro biofilm eradication model against representative hospital and foodborne infectious pathogen biofilms (methicillin-resistant Staphylococcus aureus, multidrug-resistant Pseudomonas aeruginosa, Candida albicans, Escherichia coli, and Salmonella enteritidis). Antimicrobial synergy against biofilms was demonstrated by quantifying viable organisms remaining in biofilms exposed to caprylic acid alone, PG acid alone, or combinations of the two. The combinations also synergistically inhibited growth of planktonic organisms. Toxicity of the combination was assessed in vitro on L929 fibroblasts incubated with extracts of caprylic and PG acid combinations using the Alamar Blue metabolic activity assay and the Trypan Blue exclusion cell viability assay. The extracts did not produce cytotoxic responses relative to untreated control fibroblasts

    Treating invasive aspergillosis in patients with hematologic malignancy: diagnostic-driven approach versus empiric therapies

    No full text
    Abstract Background Early antifungal therapy for invasive aspergillosis (IA) has been associated with improved outcome. Traditionally, of empiric antifungal therapy has been used for clinically suspected IA. We compared outcomes of patients with hematologic malignancy and IA who were treated with voriconazole using the diagnostic driven DDA (DDA-Vori) that includes galactomannan testing vs. empiric therapy with a non-voriconazole-containing regimen (EMP-non-Vori) or empiric therapy with voriconazole (EMP-Vori). Methods We retrospectively reviewed the medical records of 342 hematologic malignancy patients diagnosed with proven, or probable IA between July 1993 and February 2016 at our medical center who received at least 7 days of DDA-Vori, EMP-Vori, or EMP-non-Vori. Outcome assessment included response to therapy (clinical and radiographic), all-cause mortality, and IA-attributable mortality. Results By multivariate analysis, factors predictive of a favorable response included localized/sinus IA vs. disseminated/pulmonary IA (p <  0.0001), not receiving white blood cell transfusion (p <  0.01), and DDA-Vori vs. EMP-non-Vori (p < 0.0001). In contrast, predictors of mortality within 6 weeks of initiating IA therapy included disseminated/pulmonary infection vs. localized/sinus IA (p < 0.01), not undergoing stem cell transplantation within 1 year before IA (p = 0.01), and EMP-non-Vori vs. DDA-Vori (p < 0.001). Conclusions DDA-Vori was associated with better outcome (response and survival) compared with EMP-non-Vori and with equivalent outcome to EMP-Vori in hematologic malignancy patients. These outcomes associated with the implementation of DDA could lead to a reduction in the unnecessary costs and adverse events associated with the widespread use of empiric therapy

    Comparative Efficacies of Antimicrobial Catheter Lock Solutions for Fungal Biofilm Eradication in an in Vitro Model of Catheter-Related Fungemia

    No full text
    Fungal catheter-related bloodstream infections (CRBSIs)—primarily due to Candida species—account for over 12% of all CRBSIs, and have been progressively increasing in prevalence. They present significant health and economic burdens, and high mortality rates. Antimicrobial catheter lock solutions are an important prophylactic option for preventing fungal CRBSIs. In this study, we compared the effectiveness of two FDA-approved catheter lock solutions (heparin and saline) and three experimental antimicrobial catheter lock solutions—30% citrate, taurolidine-citrate-heparin (TCH), and nitroglycerin-citrate-ethanol (NiCE)—in an in vitro model of catheters colonized by fungi. The fungi tested were five different strains of Candida clinical isolates from cancer patients who contracted CRBSIs. Time-to-biofilm-eradication was assessed in the model with 15, 30, and 60 min exposures to the lock solutions. Only the NiCE lock solution was able to fully eradicate all fungal biofilms within 60 min. Neither 30% citrate nor TCH was able to fully eradicate any of the Candida biofilms in this time frame. The NiCE lock solution was significantly superior to TCH in eradicating biofilms of five different Candida species (p = 0.002 for all)
    corecore