44 research outputs found

    Spatial Organization of Phase-separated DNA Droplets

    Full text link
    Many recent studies of liquid-liquid phase separation in biology focus on phase separation as a dynamic control mechanism for cellular function, but it can also result in complex mesoscopic structures. We primarily investigate a model system consisting of DNA nanostars: finite-valence, self-assembled particles that form micron-scale liquid droplets via a binodal phase transition. We demonstrate that, upon phase separation, nanostar droplets spontaneously form hyperuniform structures, a type of disordered material with `hidden order' that combines the long-range order of crystals with the short-range isotropy of liquids. We find that the hyperuniformity of the DNA droplets reflects near-equilibrium dynamics, where phase separation drives the organization of droplets that then relax toward equilibrium via droplet Brownian motion. We engineer a two-species system of immiscible DNA droplets and find two distinctly hyperuniform structures in the same sample, but with random cross-species droplet correlations, which rules out explanations that rely on droplet-droplet hydrodynamic interactions. In addition, we perform experiments on the electrostatic coacervation of peptides and nucleotides which exhibit hyperuniform structures indistinguishable from DNA nanostars, indicating the phenomenon generally applies to phase-separating systems that experience Brownian motion. Our work on near-equilibrium droplet assembly and structure provides a foundation to investigate droplet organizational mechanisms in driven/biological environments. This approach also provides a clear path to implement phase-separated droplet patterns as exotic optical or mechanical metamaterials, or as efficient biochemical reactors.Comment: Additional experiments and discussion of hyperuniformity in droplets formed by electrostatic coacervatio

    Natural Rolling Responses of a Delta Wing in Transonic and Subsonic Flows

    Get PDF
    The unsteady, three-dimensional, full Navier-Stokes (NS) equations and the Euler equations of rigid-body dynamics are sequentially solved to simulate the natural rolling response of slender delta wings of zero thickness at moderate to high angles of attack, to transonic and subsonic flows. The governing equations of fluid flow and dynamics of the present multi-disciplinary problem are solved using the time-accurate solution of the NS equations with the implicit, upwind, Roe flux-difference splitting, finite-volume scheme and a four-stage Runge-Kutta scheme, respectively. The main focus is to analyze the effect of Mach number and angle of attack on the leading edge vortices and their breakdown, the resultant rolling motion, and overall aerodynamic response of the wing. Three cases demonstrate the natural response of a 65 deg swept, cropped delta wing in a transonic flow with breakdown of the leading edge vortices and an 80 deg swept delta wing in a subsonic flow undergoing either damped or self-excited limit-cycle rolling oscillations as a function of angle of attack. Comparisons with an experimental investigation completes this study, validating the analysis and illustrating the complex details afforded by computational investigations

    Time-Spectral Rotorcraft Simulations on Overset Grids

    Get PDF
    The Time-Spectral method is derived as a Fourier collocation scheme and applied to NASA's overset Reynolds-averaged Navier-Stokes (RANS) solver OVERFLOW. The paper outlines the Time-Spectral OVERFLOWimplementation. Successful low-speed laminar plunging NACA 0012 airfoil simulations demonstrate the capability of the Time-Spectral method to resolve the highly-vortical wakes typical of more expensive three-dimensional rotorcraft configurations. Dealiasing, in the form of spectral vanishing viscosity (SVV), facilitates the convergence of Time-Spectral calculations of high-frequency flows. Finally, simulations of the isolated V-22 Osprey tiltrotor for both hover and forward (edgewise) flight validate the three-dimensional Time-Spectral OVERFLOW implementation. The Time-Spectral hover simulation matches the time-accurate calculation using a single harmonic. Significantly more temporal modes and SVV are required to accurately compute the forward flight case because of its more active, high-frequency wake

    Improving Incident Investigation through Inclusion of Human Factors

    Get PDF
    Studies of offshore and maritime incidents (accidents and near-misses) show that 80% or more involve human error. By investigating incidents, we can identify safety problems and take corrective actions to prevent future such events. While many offshore and maritime companies have incident investigation programs in place, most fall short in identifying and dealing with human errors. This paper discusses how to incorporate human factors into an incident investigation program. Topics include data collection and analysis and how to determine the types of safety interventions appropriate to safeguard against the identified risks. Examples are provided from three organizations that have established their own human factors investigation programs

    High dynamic range thermally actuated bimorph mirror for gravitational wave detectors

    No full text
    Adaptive optics are crucial for overcoming the fabrication limits on mirror curvature in high-precision interferometry. We describe a low-cost thermally actuated bimorph mirror with 200 mD linear response, which meets dynamic range and low aberration requirements for the A+{\rm{A}} + upgrade of the Laser Interferometer Gravitational-wave Observatory (LIGO). Its deformation and operation limits were measured and verified against finite element simulation.Huy Tuong Cao, Aidan Brooks, Sebastian W. S. Ng, David Ottaway, Antonio Perreca, Jonathan W. Richardson ... et al

    Progress Toward Generation of a Navier-Stokes Database for a Harrier in Ground Effect

    No full text
    The Harrier YAV-8B aircraft is capable of vertical and short-field take-off and landing (V/STOL) by directing its four exhaust nozzles toward the ground, or conventional flight by rotating its nozzles into a horizontal position. The British Royal Air Force and the United States Marine Corps have used this aircraft for more than 30 years to provide a quick reaction time for troop support, and reduce the need for long runways. The success of this powered-lift (PL) vehicle has also prompted the more recent design of the Joint Strike Fighter (JSF). However there are significant safety issues that must be addressed when operating a PL vehicle in close proximity to the ground. Hot Gas Ingestion (HGI) by the inlets can result in a rapid loss of powered lift; and high-speed jet flows along the ground plane can induce low pressures underneath the vehicle, causing a 'suck-down' effect. Under these conditions, departure from controlled flight may occur. Moreover, unsteady ground vortices and jet fountains can affect the aircraft,s controllability and its proximity to ground troops. The viscous, time-dependent flow fields of PL vehicles are difficult to accurately and efficiently predict using Computational Fluid Dynamics (CFD). A number of researchers have used the time-dependent Reynolds-averaged Navier-Stokes (RANS) equations to compute flows for single and multiple jets in a cross-flow. A few have added some geometric complexity to the problem by computing flows for jet-augmented delta wings near a ground plane. Smith et.al. computed for the first time a single RANS solution about a simplified Harrier. This geometry included a fuselage, wing, leading edge root extension (LERX), inlets, and exhaust nozzles. All of these investigations cite two practical problems with computing these flows: 1) the need for improved solution accuracy; and, 2) the need for faster solution methods. We view the need for faster solution methods as key to improving the solution accuracy and making this class of computation more routine. One can hardly refine grids, explore the use of advanced turbulence models, and generate databases when it takes weeks of dedicated computer time for a single solution. Chaderjian, Ahmad, Pandya, and Murman have focused on reducing the time-to-solution for this very difficult and complex problem through process automation and exploitation of parallel computing. They began with the Harrier geometry reported, and added a deflected wing flap and empennage for greater realism. To date more than 80 solutions have been carried out. This paper will describe this process and progress made in reducing the time required to generate a simple longitudinal force and moment database for a Harrier in ground effect. It shows a typical snap-shot from an unsteady streakline animation, where fluid particles are colored by temperature. The ground vortex and a jet-fountain vortex are highlighted. It also shows a similar streakline image, where HGI occurs due to the vehicle in close proximity to the ground. It is show the mean lift coefficient as a function of angle of attack and height. The angle of attack range was 4 deg less than or = alpha less than or = 10 deg with an increment of 1 degree, and the height range was 10 ft less than or = h less than or = 30ft with an increment of 5 feet. This 35 solution database was extended to over 2500 cases using a monotone cubic-spline interpolation procedure. The suck-down effect (reduction of lift near the ground) is highlighted in the figure. The "cushion effect," the conventional reduction of lift as the vehicle moves out of ground effect, is also indicated. All 35 RANS solutions were obtained using 952 Silicon Graphics Origin 2000 and 3000 processors in dedicated mode for one week. Typically, 112 processors were assigned to each case. Some other cases used fewer processors to utilize all available CPUS. The final paper will report on the automation of the solution process, including: grid generation, job monitoring, solution completion criteria, and post processing. Moreover, improvements in parallel efficiency for a dual time-step algorithm for the RANS equations will also be presented. Results will be discussed in detail using unsteady streakline flow visualization to correlate unsteady flow structures with dominant aerodynamic frequencies. The stability derivatives, CL, and CL, will also be presented

    Automated CFD Database Generation for a 2nd Generation Glide-Back-Booster

    No full text
    A new software tool, AeroDB, is used to compute thousands of Euler and Navier-Stokes solutions for a 2nd generation glide-back booster in one week. The solution process exploits a common job-submission grid environment using 13 computers located at 4 different geographical sites. Process automation and web-based access to the database greatly reduces the user workload, removing much of the tedium and tendency for user input errors. The database consists of forces, moments, and solution files obtained by varying the Mach number, angle of attack, and sideslip angle. The forces and moments compare well with experimental data. Stability derivatives are also computed using a monotone cubic spline procedure. Flow visualization and three-dimensional surface plots are used to interpret and characterize the nature of computed flow fields
    corecore