5,054 research outputs found

    High Performance Electrocatalysts Based on Pt Nanoarchitecture for Fuel Cell Applications

    Get PDF
    Fuel cells, converting chemical energy from fuels into electricity directly without the need for combustion, are promising energy conversion devices for their potential applications as environmentally friendly, energy efficient power sources. However, to take fuel cell technology forward towards commercialization, we need to achieve further improvements in electrocatalyst technology, which can play an extremely important role in essentially determining cost-effectiveness, performance, and durability. In particular, platinum- (Pt-) based electrocatalyst approaches have been extensively investigated and actively pursued to meet those demands as an ideal fuel cell catalyst due to their most outstanding activity for both cathode oxygen reduction reactions and anode fuel oxidation reactions. In this review, we will address important issues and recent progress in the development of Pt-based catalysts, their synthesis, and characterization. We will also review snapshots of research that are focused on essential dynamics aspects of electrocatalytic reactions, such as the shape effects on the catalytic activity of Pt-based nanostructures, the relationships between structural morphology of Pt-based nanostructures and electrochemical reactions on both cathode and anode electrodes, and the effects of composition and electronic structure of Pt-based catalysts on electrochemical reaction properties of fuel cells.</jats:p

    Dissociation of ssDNA - Single-Walled Carbon Nanotube Hybrids by Watson-Crick Base Pairing

    Full text link
    The unwrapping event of ssDNA from the SWNT during the Watson-Crick base paring is investigated through electrical and optical methods, and binding energy calculations. While the ssDNA-metallic SWNT hybrid shows the p-type semiconducting property, the hybridization product recovered metallic properties. The gel electrophoresis directly verifies the result of wrapping and unwrapping events which was also reflected to the Raman shifts. Our molecular dynamics simulations and binding energy calculations provide atomistic description for the pathway to this phenomenon. This nano-physical phenomenon will open up a new approach for nano-bio sensing of specific sequences with the advantages of efficient particle-based recognition, no labeling, and direct electrical detection which can be easily realized into a microfluidic chip format.Comment: 4 pages, 4 figure

    24^{24}Mg(pp, α\alpha)21^{21}Na reaction study for spectroscopy of 21^{21}Na

    Full text link
    The 24^{24}Mg(pp, α\alpha)21^{21}Na reaction was measured at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory in order to better constrain spins and parities of energy levels in 21^{21}Na for the astrophysically important 17^{17}F(α,p\alpha, p)20^{20}Ne reaction rate calculation. 31 MeV proton beams from the 25-MV tandem accelerator and enriched 24^{24}Mg solid targets were used. Recoiling 4^{4}He particles from the 24^{24}Mg(pp, α\alpha)21^{21}Na reaction were detected by a highly segmented silicon detector array which measured the yields of 4^{4}He particles over a range of angles simultaneously. A new level at 6661 ±\pm 5 keV was observed in the present work. The extracted angular distributions for the first four levels of 21^{21}Na and Distorted Wave Born Approximation (DWBA) calculations were compared to verify and extract angular momentum transfer.Comment: 11 pages, 6 figures, proceedings of the 18th International Conference on Accelerators and Beam Utilization (ICABU2014

    New model for system of mesoscopic Josephson contacts

    Full text link
    Quantum fluctuations of the phases of the order parameter in 2D arrays of mesoscopic Josephson junctions and their effect on the destruction of superconductivity in the system are investigated by means of a quantum-cosine model that is free of the incorrect application of the phase operator. The proposed model employs trigonometric phase operators and makes it possible to study arrays of small superconducting granules, pores filled with superfluid helium, or Josephson junctions in which the average number of particles n0n_0 (effective bosons, He atoms, and so on) is small, and the standard approach employing the phase operator and the particle number operator as conjugate ones is inapplicable. There is a large difference in the phase diagrams between arrays of macroscopic and mesoscopic objects for n0<5n_0 < 5 and U<JU<J (UU is the characteristic interaction energy of the particle per granule and JJ is the Josephson coupling constant). Reentrant superconductivity phenomena are discussed.Comment: 4 pages, 3 Postscript figure

    Critical Behaviour of Superfluid 4^4He in Aerogel

    Full text link
    We report on Monte Carlo studies of the critical behaviour of superfluid 4^4He in the presence of quenched disorder with long-range fractal correlations. According to the heuristic argument by Harris, uncorrelated disorder is irrelevant when the specific heat critical exponent α\alpha is negative, which is the case for the pure 4^4He. However, experiments on helium in aerogel have shown that the superfluid density critical exponent ζ\zeta changes. We hypothesize that this is a cross-over effect due to the fractal nature of aerogel. Modelling the aerogel as an incipient percolating cluster in 3D and weakening the bonds at the fractal sites, we perform XY-model simulations, which demonstrate an increase in ζ\zeta from 0.67±0.0050.67 \pm 0.005 for the pure case to an apparent value of 0.722±0.0050.722\pm 0.005 in the presence of the fractal disorder, provided that the helium correlation length does not exceed the fractal correlation length.Comment: 4 pages, RevTex, 3 postscript figures, LaTeX file and figures have been uuencoded

    Collective Modes of Tri-Nuclear Molecules

    Get PDF
    A geometrical model for tri-nuclear molecules is presented. An analytical solution is obtained provided the nuclei, which are taken to be prolately deformed, are connected in line to each other. Furthermore, the tri-nuclear molecule is composed of two heavy and one light cluster, the later sandwiched between the two heavy clusters. A basis is constructed in which Hamiltonians of more general configurations can be diagonalized. In the calculation of the interaction between the clusters higher multipole deformations are taken into account, including the hexadecupole one. A repulsive nuclear core is introduced in the potential in order to insure a quasi-stable configuration of the system. The model is applied to three nuclear molecules, namely 96^{96}Sr + 10^{10}Be + 146^{146}Ba, 108^{108}Mo + 10^{10}Be + 134^{134}Te and 112^{112}Ru + 10^{10}Be + 130^{130}Sn.Comment: 24 pages, 9 figure

    Fabrication of Robust Thermal Transition Modules and First Cryogenic Experiment with the Refurbished COLDDIAG

    Get PDF
    Two sets of thermal transition modules as a key component for the COLDDIAG (cold vacuum chamber for beam heat load diagnostics) refurbishment were manufactured, based on the previous design study. The modules are installed in the existing COLDDIAG cryostat and tested with an operating temperature of approximately 50 K at both a cold bore and a thermal shield. This cool-down experiment is a preliminary investigation aiming at beam heat-load studies at the FCC-hh where the beam screens will be operated at almost the same temperature. In this contribution, we report the fabrication processes of the mechanically robust transition modules and the first thermal measurement results with the refurbished COLDDIAG in a cryogenic environment. The static heat load in the refurbished cryostat remains unchanged, compared to that in the former one (4-K cold bore and 50-K shield with thin transitions), despite the increase in the transition thickness. It originates from the identical temperature at the cold bore and the shield, which can theoretically allow the heat intakes by thermal conduction and radiation between them to vanish
    corecore