134 research outputs found

    Fission half-lives of super-heavy nuclei in a microscopic approach

    Full text link
    A systematic study of 160 heavy and super-heavy nuclei is performed in the Hartree-Fock-Bogoliubov approach with the finite range and density dependent Gogny force with the D1S parameter set. We show calculations in several approximations: with axially symmetric and reflexion symmetric wave functions, with axially symmetric and non-reflexion symmetric wave functions and finally some representative examples with triaxial wave functions are also discussed. Relevant properties of the ground state and along the fission path are thoroughly analyzed. Fission barriers, Qα_\alpha-factors and lifetimes with respect to fission and α\alpha-decay as well as other observables are discussed. Larger configuration spaces and more general HFB wave functions as compared to previous studies provide a very good agreement with the experimental data.Comment: 26 pages, 15 figure

    Spin photocurrents and circular photon drag effect in (110)-grown quantum well structures

    Get PDF
    We report on the study of spin photocurrents in (110)-grown quantum well structures. Investigated effects comprise the circular photogalvanic effect and so far not observed circular photon drag effect. The experimental data can be described by an analytical expression derived from a phenomenological theory. A microscopic model of the circular photon drag effect is developed demonstrating that the generated current has spin dependent origin.Comment: 6 pages, 3 figure

    Search for Fingerprints of Tetrahedral Symmetry in 156Gd^{156}Gd

    Full text link
    Theoretical predictions suggest the presence of tetrahedral symmetry as an explanation for the vanishing intra-band E2-transitions at the bottom of the odd-spin negative parity band in 156Gd^{156}Gd. The present study reports on experiment performed to address this phenomenon. It allowed to determine the intra-band E2 transitions and branching ratios B(E2)/B(E1) of two of the negative-parity bands in 156Gd^{156}Gd.Comment: presented by Q.T. Doan at XLII Zakopane School of Physics: Breaking Frontiers: Submicron Structures in Physics and Biology, May 2008. 5 pages, minor corrections. To be published in the proceeding

    High-precision mass measurements for the isobaric multiplet mass equation at A=52

    Get PDF
    Masses of Co-52, (52)Com, Fe-52, Fe-52(m), and Mn-52 have been measured with the JYFLTRAP double Penning trap mass spectrometer. The isobaric multiplet mass equation for the T = 2 quintet at A = 52 has been studied employing the new mass values. No significant breakdown (beyond the 3 sigma level) of the quadratic form of the IMME was observed (chi(2)/n = 2.4). The cubic coefficient was 6.0(32) keV (chi(2)/n = 1.1). The excitation energies for the isomer and the T = 2 isobaric analog state in Co-52 have been determined to be 374(13) keV and 2922(13) keV, respectively. The measured mass values for Co-52 and (52)Com are 29(10) keV and 16(15) keV higher, respectively, than obtained in a recent storage-ring experiment, and significantly lower than predicted by extrapolations. Consequently, this has an impact on the proton separation energies for Co-52 and Ni-53 relevant for the astrophysical rapid proton capture process. The Q value for the proton decay from the 19/2(-) isomer in Co-53 has been determined with an unprecedented precision, Q(p) = 1558.8(17) keV.Peer reviewe

    Breakdown of \u3cem\u3eK\u3c/em\u3e Selection in \u3csup\u3e178\u3c/sup\u3eHf

    Get PDF
    Coulomb activation of the four quasiparticle Kπ = 16+ 178Hf isomer (t 1/2 = 31 y) has led to the measurement of a set of Eλ matrix elements coupling the isomer band to the ground band. The present data combined with earlier 178Hf Coulomb excitation data have probed the K components in the wave functions and revealed the onset and saturation of K mixing in low-K bands, whereas the mixing is negligible in the high-K bands. The implications can be applied to other quadrupole-deformed nuclei

    Spin Dependence of \u3cem\u3eK\u3c/em\u3e Mixing, Strong Configuration Mixing, and Electromagnetic Properties of \u3csup\u3e178\u3c/sup\u3eHf

    Get PDF
    The combined data of two Coulomb excitation experiments has verified the purely electromagnetic population of the Kπ = 4+, 6+, 8−, and 16+rotational bands in 178Hf via 2≀Μ ≀14 K-forbidden transitions, quantifying the breakdown of the K-selection rule with increasing spin in the low-K bands. The Îł -, 4+, and 6+bands were extended, and four new states in a rotational band were tentatively assigned to a previously known Kπ = 0+band. The quasiparticle structure of the 6+(t1/2= 77 ns) and 8−(t1/2= 4 s) isomer bands were evaluated, showing that the gyromagnetic ratios of the 6+ isomer band are consistent with a pure π 7/2+[404], π 5/2+[402] structure. The 8−isomer band at 1147 keV and the second 8−band at 1479 keV, thought to be predominantly Îœ 7/2-[514], Îœ 9/2+[624] and π 9/2-[514], π 7/2+[404], respectively, are mixed to a degree approaching the strongmixing limit. Based on measured (Kπ = 16+‖E2‖Kπ = 0+) matrix elements, it was shown that heavy-ion bombardment could depopulate the 16+isomer at the ∌1% level, although no states were found that would mediate photodeexcitation of the isomer via low-energy x-ray absorption

    Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets

    Full text link
    This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magnets and, hence, is subject to possible modifications arising during this process.Comment: 10 pages, 14MB, accepted by FAIR STI in May 2009, editors: Inti Lehmann (chair), Andrea Bersani, Yuri Lobanov, Jost Luehning, Jerzy Smyrski, Technical Coordiantor: Lars Schmitt, Bernd Lewandowski (deputy), Spokespersons: Ulrich Wiedner, Paola Gianotti (deputy

    Breakdown of K selection in Hf178

    Get PDF
    Coulomb activation of the four quasiparticle Kπ=16+ Hf178 isomer (t1/2=31y) has led to the measurement of a set of Eλ matrix elements coupling the isomer band to the ground band. The present data combined with earlier Hf178 Coulomb excitation data have probed the K components in the wave functions and revealed the onset and saturation of K mixing in low-K bands, whereas the mixing is negligible in the high-K bands. The implications can be applied to other quadrupole-deformed nuclei
    • 

    corecore