6,847 research outputs found

    The Role of Mass and Environment in Multiple Star Formation: A 2MASS Survey of Wide Multiplicity in Three Young Associations

    Get PDF
    We present the results of a search for wide binary systems among 783 members of three nearby young associations: Taurus-Auriga, Chamaeleon I, and two subgroups of Upper Scorpius. Near-infrared (JHK) imagery from 2MASS was analyzed to search for wide (1-30"; ~150-4500 AU) companions to known association members, using color-magnitude cuts to reject likely background stars. We identify a total of 131 candidate binary companions with colors consistent with physical association, of which 39 have not been identified previously in the literature. Our results suggest that the wide binary frequency is a function of both mass and environment, with significantly higher frequencies among high-mass stars than lower-mass stars and in the T associations than in the OB association. We discuss the implications for wide binary formation and conclude that the environmental dependence is not a direct result of stellar density or total association mass, but instead might depend on another environmental parameter like the gas temperature. We also analyze the mass ratio distribution as a function of mass and find that it agrees with the distribution for field stars to within the statistical uncertainties. The binary populations in these associations generally follow the empirical mass-maximum separation relation observed for field binaries, but we have found one candidate low-mass system (USco-160611.9-193532; Mtot~0.4 Msun) which has a projected separation (10.8"; 1550 AU) much larger than the suggested limit for its mass. (Abridged)Comment: Accepted to ApJ; 27 pages in emulateapj format. The full version of table 2 can be downloaded via http://www.astro.caltech.edu/~alk/tab2.pdf (PDF) or http://www.astro.caltech.edu/~alk/tab2.txt (text

    On centralizer algebras for spin representations

    Full text link
    We give a presentation of the centralizer algebras for tensor products of spinor representations of quantum groups via generators and relations. In the even-dimensional case, this can be described in terms of non-standard q-deformations of orthogonal Lie algebras; in the odd-dimensional case only a certain subalgebra will appear. In the classical case q = 1 the relations boil down to Lie algebra relations

    On the complexity of some birational transformations

    Get PDF
    Using three different approaches, we analyze the complexity of various birational maps constructed from simple operations (inversions) on square matrices of arbitrary size. The first approach consists in the study of the images of lines, and relies mainly on univariate polynomial algebra, the second approach is a singularity analysis, and the third method is more numerical, using integer arithmetics. Each method has its own domain of application, but they give corroborating results, and lead us to a conjecture on the complexity of a class of maps constructed from matrix inversions

    Changes in cytokine production in healthy subjects practicing Guolin Qigong : a pilot study

    Get PDF
    BACKGROUND: Guolin Qigong is a combination of meditation, controlled breathing and physical movement designed to control the vital energy (qi) of the body and consequently to improve spiritual, physical and mental health. Practice of Qigong has been reported to alter immunological function, but there have been few studies of its effects on cytokines, the key regulators of immunity. METHODS: Numbers of peripheral blood cytokine-secreting cells were determined by ELISPOT in 19 healthy volunteers aged 27 – 55, before they were taught the practice of Qigong and after 3, 7 and 14 weeks of daily practice. The effect of Qigong on blood cortisol was also examined. RESULTS: Numbers of IL4 and IL12-secreting cells remained stable. IL6 increased at 7 weeks and TNFα increased in unstimulated cultures at 3 and 7 weeks but decreased at these times in LPS and SAC-stimulated cultures. Of particular interest, IFNγ-secreting cells increased and IL10-secreting cells decreased in PHA-stimulated cultures, resulting in significant increases in the IFNγ:IL10 ratio. Cortisol, a known inhibitor of type 1 cytokine production, was reduced by practicing Qigong. CONCLUSION: These preliminary studies in healthy subjects, although not necessarily representative of a randomized healthy population and not including a separate control group, have indicated that blood levels of the stress-related hormone cortisol may be lowered by short-term practice of Qigong and that there are concomitant changes in numbers of cytokine-secreting cells. Further studies of the effect of Qigong in patients with clinical diseases known to be associated with type 2 cytokine predominance are merited

    Transcriptional regulation of the IGF signaling pathway by amino acids and insulin-like growth factors during myogenesis in Atlantic salmon

    Get PDF
    The insulin-like growth factor signalling pathway is an important regulator of skeletal muscle growth. We examined the mRNA expression of components of the insulin-like growth factor (IGF) signalling pathway as well as Fibroblast Growth Factor 2 (FGF2) during maturation of myotubes in primary cell cultures isolated from fast myotomal muscle of Atlantic salmon (Salmo salar). The transcriptional regulation of IGFs and IGFBP expression by amino acids and insulin-like growth factors was also investigated. Proliferation of cells was 15% d(-1) at days 2 and 3 of the culture, increasing to 66% d(-1) at day 6. Three clusters of elevated gene expression were observed during the maturation of the culture associated with mono-nucleic cells (IGFBP5.1 and 5.2, IGFBP-6, IGFBP-rP1, IGFBP-2.2 and IGF-II), the initial proliferation phase (IGF-I, IGFBP-4, FGF2 and IGF-IRb) and terminal differentiation and myotube production (IGF2R, IGF-IRa). In cells starved of amino acids and serum for 72 h, IGF-I mRNA decreased 10-fold which was reversed by amino acid replacement. Addition of IGF-I and amino acids to starved cells resulted in an 18-fold increase in IGF-I mRNA indicating synergistic effects and the activation of additional pathway(s) leading to IGF-I production via a positive feedback mechanism. IGF-II, IGFBP-5.1 and IGFBP-5.2 expression was unchanged in starved cells, but increased with amino acid replacement. Synergistic increases in expression of IGFBP5.2 and IGFBP-4, but not IGFBP5.1 were observed with addition of IGF-I, IGF-II or insulin and amino acids to the medium. IGF-I and IGF-II directly stimulated IGFBP-6 expression, but not when amino acids were present. These findings indicate that amino acids alone are sufficient to stimulate myogenesis in myoblasts and that IGF-I production is controlled by both endocrine and paracrine pathways. A model depicting the transcriptional regulation of the IGF pathway in Atlantic salmon muscle following feeding is proposed.Publisher PDFPeer reviewe

    Holonomic quantum computation with neutral atoms

    Full text link
    We propose an all-geometric implementation of quantum computation using neutral atoms in cavity QED. We show how to perform generic single- and two-qubit gates, the latter by encoding a two-atom state onto a single, many-level atom. We compare different strategies to overcome limitations due to cavity imperfections.Comment: 14 pages, 9 figure

    Modular and predictable assembly of porous organic molecular crystals

    No full text
    Nanoporous molecular frameworks are important in applications such as separation, storage and catalysis. Empirical rules exist for their assembly but it is still challenging to place and segregate functionality in three-dimensional porous solids in a predictable way. Indeed, recent studies of mixed crystalline frameworks suggest a preference for the statistical distribution of functionalities throughout the pores rather than, for example, the functional group localization found in the reactive sites of enzymes. This is a potential limitation for 'one-pot' chemical syntheses of porous frameworks from simple starting materials. An alternative strategy is to prepare porous solids from synthetically preorganized molecular pores. In principle, functional organic pore modules could be covalently prefabricated and then assembled to produce materials with specific properties. However, this vision of mix-and-match assembly is far from being realized, not least because of the challenge in reliably predicting three-dimensional structures for molecular crystals, which lack the strong directional bonding found in networks. Here we show that highly porous crystalline solids can be produced by mixing different organic cage modules that self-assemble by means of chiral recognition. The structures of the resulting materials can be predicted computationally, allowing in silico materials design strategies. The constituent pore modules are synthesized in high yields on gram scales in a one-step reaction. Assembly of the porous co-crystals is as simple as combining the modules in solution and removing the solvent. In some cases, the chiral recognition between modules can be exploited to produce porous organic nanoparticles. We show that the method is valid for four different cage modules and can in principle be generalized in a computationally predictable manner based on a lock-and-key assembly between modules

    Search for Fingerprints of Tetrahedral Symmetry in 156Gd^{156}Gd

    Full text link
    Theoretical predictions suggest the presence of tetrahedral symmetry as an explanation for the vanishing intra-band E2-transitions at the bottom of the odd-spin negative parity band in 156Gd^{156}Gd. The present study reports on experiment performed to address this phenomenon. It allowed to determine the intra-band E2 transitions and branching ratios B(E2)/B(E1) of two of the negative-parity bands in 156Gd^{156}Gd.Comment: presented by Q.T. Doan at XLII Zakopane School of Physics: Breaking Frontiers: Submicron Structures in Physics and Biology, May 2008. 5 pages, minor corrections. To be published in the proceeding
    • …
    corecore