42 research outputs found

    Analysis of the reaction of subcutaneous tissues in rats and the antimicrobial activity of calcium hydroxide paste used in association with different substances

    Get PDF
    The aim of this study was to evaluate the subcutaneous tissue response in rats and the antimicrobial activity of intracanal calcium hydroxide dressings mixed with different substances against E. faecalis. Fifty four rats were divided into three experimental groups according to the vehicle in the calcium hydroxide treatment: 0.4% chlorohexidine in propylene glycol (PG),Casearia sylvestris Sw in PG and calcium hydroxide+PG (control group). The pastes were placed into polyethylene tubes and implanted into the subcutaneous tissue. After 7, 14 and 30 days, the samples were processed and histologically evaluated (hematoxylin and eosin). The tissue surface in contact with the material was analyzed, and the quantitative analysis determined the volume density occupied by the inflammatory infiltrate (giant cells, polymorphonuclear cells and mononuclear cells), fibroblasts, collagen fibers and blood vessels. For the antimicrobial analysis, 20 dentin blocks infected with E. faecalis were treated with calcium hydroxide pastes in different vehicles; 0.4% chlorhexidine in PG, PG, extract fromCasearia sylvestris Sw in PG and a positive control (infection and without medication) for 7 days. The efficiency of the pastes was evaluated by the live/dead technique and confocal microscopy. The results showed that 0.4% chlorhexidine induced a higher inflammatory response than the other groups. The Casearia sylvestris Sw extract showed satisfactory results in relation to the intensity of the inflammatory response. In the microbiological test, there were no statistical differences between the evaluated intracanal dressings and the percentage of bacterial viability was between 33 and 42%. The control group showed an 86% viability. Antimicrobial components such as chlorhexidine or Casearia sylvestris Sw did not improve the antimicrobial activity against E. faecalis in comparison to the calcium hydroxide+PG treatment. In addition, the incorporation of chlorhexidine in the calcium hydroxide paste promoted the highest inflammatory response

    A new improved protocol for in vitro intratubular dentinal bacterial contamination for antimicrobial endodontic tests: standardization and validation by confocal laser scanning microscopy

    Get PDF
    Objectives To compare three methods of intratubular contamination that simulate endodontic infections using confocal laser scanning microscopy (CLSM). Material and Methods Two pre-existing models of dentinal contamination were used to induce intratubular infection (groups A and B). These methods were modified in an attempt to improve the model (group C). Among the modifications it may be included: specimen contamination for five days, ultrasonic bath with BHI broth after specimen sterilization, use of E. faecalis during the exponential growth phase, greater concentration of inoculum, and two cycles of centrifugation on alternate days with changes of culture media. All specimens were longitudinally sectioned and stained with of LIVE/DEAD® for 20 min. Specimens were assessed using CLSM, which provided images of the depth of viable bacterial proliferation inside the dentinal tubules. Additionally, three examiners used scores to classify the CLSM images according to the following parameters: homogeneity, density, and depth of the bacterial contamination inside the dentinal tubules. Kruskal-Wallis and Dunn’s tests were used to evaluate the live and dead cells rates, and the scores obtained. Results The contamination scores revealed higher contamination levels in group C when compared with groups A and B (p0.05). The volume of live cells in group C was higher than in groups A and B (p<0.05). Conclusion The new protocol for intratubular infection resulted in high and uniform patterns of bacterial contamination and higher cell viability in all specimens when compared with the current methods

    Surface-associated MUC5B mucins promote protease activity in Lactobacillus fermentum biofilms

    Get PDF
    Background: Mucosal surfaces are coated with layers of mucus gel that protect the underlying tissues and promote colonization by members of the commensal microflora. Lactobacillus fermentum is a common inhabitant of the oral cavity, gastrointestinal and reproductive tracts and is one of the most important lactic acid bacteria contributing to the formation of a healthy intestinal microflora. We have investigated the proteolytic activity in L. fermentum in response to interactions with the MUC5B mucin, which is a major component of mucus gels at sites colonized by this micro-organism. Methods: Biofilms of Lactobacillus fermentum were established in mini-flow cells in the presence or absence of human salivary MUC5B. The proteolytic activity of biofilm cells was examined in a confocal scanning laser microscope with a fluorescent protease substrate. Degradation of MUC5B by L. fermentum was analysed using SDS-PAGE followed by Western blotting with antisera raised against the MUC5B peptide. Cell surface proteins differentialy expressed in a MUC5B-rich environment were identified with the aid of comparative two-dimensional electrophoresis followed by LC-MS/MS. Results: Lactobacillus fermentum adhered well to surfaces coated with MUC5B mucin and in biofilms of L. fermentum formed in a MUC5B environment, the proportion of proteolytically-active cells (47 ± 0.6% of the population), as shown by cleavage of a fluorescent casein substrate, was significantly greater (p < 0.01) than that in biofilms formed in nutrient broth (0.4 ± 0.04% of the population). Thus, the presence of MUC5B mucins enhanced bacterial protease activity. This effect was mainly attributable to contact with surface-associated mucins rather than those present in the fluid phase. Biofilms of L. fermentum were capable of degrading MUC5B mucins suggesting that this complex glycoprotein can be exploited as a nutrient source by the bacteria. Comparison of the surface proteomes of biofilm cells of L. fermentum in a MUC5B environment with those in nutrient broth using two-dimensional electrophoresis and mass spectroscopy, showed that the enhanced proteolytic activity was associated with increased expression of a glycoprotease; O-sialoglycoprotein endopeptidase, as well as chaperone proteins such as DnaK and trigger factor. Conclusions: Adhesion to mucin-coated surfaces leads to a shift towards a more protease-active phenotype within L. fermentum biofilms and proteases produced within the biofilms can degrade MUC5B mucins. The enhanced proteolytic activity was associated with an increase in O-sialoglycoprotein endopeptidase on the cell surface. We propose that the upregulation of chaperone proteins in the mucin environment may contribute to the protease-active phenotype through activation of the glycopeptidase. This would represent one way for commensal lactobacilli e.g. L. fermentum to exploit complex substrates in their local environment in order to survive on mucosal surfaces
    corecore