4,970 research outputs found

    Youth opinions matter: retaining human capital in Coos County

    Get PDF
    As Coos County youth age, their attachment to their communities may deteriorate. This brief presents new data from the Coos Youth Study. This research indicates efforts to keep young people in Coos may benefit from efforts to show students that their views matter to adults in their communities

    Flavour-symmetric type-II Dirac neutrino seesaw mechanism

    Full text link
    We propose a Standard Model extension with underlying A4 flavour symmetry where small Dirac neutrino masses arise from a Type-II seesaw mechanism. The model predicts the "golden" flavour-dependent bottom-tau mass relation, requires an inverted neutrino mass ordering and non-maximal atmospheric mixing angle. Using the latest neutrino oscillation global fit we derive restrictions on the oscillation parameters, such as a correlation between Dirac CP phase and the lightest neutrino mass.Comment: 10 pages, 4 figure

    Topology and Dynamics in Complex Networks: The Role of Edge Reciprocity

    Full text link
    A key issue in complex systems regards the relationship between topology and dynamics. In this work, we use a recently introduced network property known as steering coefficient as a means to approach this issue with respect to different directed complex network systems under varying dynamics. Theoretical and real-world networks are considered, and the influences of reciprocity and average degree on the steering coefficient are quantified. A number of interesting results are reported that can assist the design of complex systems exhibiting larger or smaller relationships between topology and dynamics

    Condensation of Vortex-Strings: Effective Potential Contribution Through Dual Actions

    Full text link
    Topological excitations are believed to play an important role in different areas of physics. For example, one case of topical interest is the use of dual models of quantum cromodynamics to understand properties of its vacuum and confinement through the condensation of magnetic monopoles and vortices. Other applications are related to the role of these topological excitations, nonhomogeneous solutions of the field equations, in phase transitions associated to spontaneous symmetry breaking in gauge theories, whose study is of importance in phase transitions in the early universe, for instance. Here we show a derivation of a model dual to the scalar Abelian Higgs model where its topological excitations, namely vortex-strings, become manifest and can be treated in a quantum field theory way. The derivation of the nontrivial contribution of these vacuum excitations to phase transitions and its analogy with superconductivity is then made possible and they are studied here.Comment: 7 pages. Based on a talk given by R. O. Ramos at the Infrared QCD in Rio conference, Rio de Janeiro, Brazil, June 5-9, 200

    Retinal Vessel Segmentation Using the 2-D Morlet Wavelet and Supervised Classification

    Get PDF
    We present a method for automated segmentation of the vasculature in retinal images. The method produces segmentations by classifying each image pixel as vessel or non-vessel, based on the pixel's feature vector. Feature vectors are composed of the pixel's intensity and continuous two-dimensional Morlet wavelet transform responses taken at multiple scales. The Morlet wavelet is capable of tuning to specific frequencies, thus allowing noise filtering and vessel enhancement in a single step. We use a Bayesian classifier with class-conditional probability density functions (likelihoods) described as Gaussian mixtures, yielding a fast classification, while being able to model complex decision surfaces and compare its performance with the linear minimum squared error classifier. The probability distributions are estimated based on a training set of labeled pixels obtained from manual segmentations. The method's performance is evaluated on publicly available DRIVE and STARE databases of manually labeled non-mydriatic images. On the DRIVE database, it achieves an area under the receiver operating characteristic (ROC) curve of 0.9598, being slightly superior than that presented by the method of Staal et al.Comment: 9 pages, 7 figures and 1 table. Accepted for publication in IEEE Trans Med Imag; added copyright notic

    Perceived Community Cohesion and the Stress Process in Youth

    Get PDF
    Using survey data from two youth samples, one rural and one urban, we examine the role and significance of perceived community cohesion in the stress process. In particular, we assess the extent to which community attachment and detachment are related to depressed mood, problem substance use, and delinquency net of social statuses, stress exposure, and personal attributes. In addition, we explore the degree to which those dimensions of community cohesion explain or condition the links between the above stress-process components (e.g., social statuses, stress exposure, and personal attributes) and well-being. We find remarkably similar results across samples: community attachment is related to lower odds of problem substance use and delinquency; community detachment is related to higher levels of depressed mood, problem substance use, and delinquency; and community attachment buffers the link between stress and problem substance use. With respect to depressed mood, however, the rural youth show greater vulnerability to stress than the urban youth and unique benefits from community attachment compared to the latter. Our findings highlight the roles of community attachment and detachment in the stress process and underscore the importance of each for youth well-being in rural and urban settings

    Design of an RSFQ Control Circuit to Observe MQC on an rf-SQUID

    Full text link
    We believe that the best chance to observe macroscopic quantum coherence (MQC) in a rf-SQUID qubit is to use on-chip RSFQ digital circuits for preparing, evolving and reading out the qubit's quantum state. This approach allows experiments to be conducted on a very short time scale (sub-nanosecond) without the use of large bandwidth control lines that would couple environmental degrees of freedom to the qubit thus contributing to its decoherence. In this paper we present our design of a RSFQ digital control circuit for demonstrating MQC in a rf-SQUID. We assess some of the key practical issues in the circuit design including the achievement of the necessary flux bias stability. We present an "active" isolation structure to be used to increase coherence times. The structure decouples the SQUID from external degrees of freedom, and then couples it to the output measurement circuitry when required, all under the active control of RSFQ circuits. Research supported in part by ARO grant # DAAG55-98-1-0367.Comment: 4 pages. More information and publications at http://www.ece.rochester.edu:8080/users/sde/research/publications/index.htm
    corecore