11 research outputs found

    Biomedical knowledge graph-enhanced prompt generation for large language models

    Full text link
    Large Language Models (LLMs) have been driving progress in AI at an unprecedented rate, yet still face challenges in knowledge-intensive domains like biomedicine. Solutions such as pre-training and domain-specific fine-tuning add substantial computational overhead, and the latter require domain-expertise. External knowledge infusion is task-specific and requires model training. Here, we introduce a task-agnostic Knowledge Graph-based Retrieval Augmented Generation (KG-RAG) framework by leveraging the massive biomedical KG SPOKE with LLMs such as Llama-2-13b, GPT-3.5-Turbo and GPT-4, to generate meaningful biomedical text rooted in established knowledge. KG-RAG consistently enhanced the performance of LLMs across various prompt types, including one-hop and two-hop prompts, drug repurposing queries, biomedical true/false questions, and multiple-choice questions (MCQ). Notably, KG-RAG provides a remarkable 71% boost in the performance of the Llama-2 model on the challenging MCQ dataset, demonstrating the framework's capacity to empower open-source models with fewer parameters for domain-specific questions. Furthermore, KG-RAG enhanced the performance of proprietary GPT models, such as GPT-3.5 which exhibited improvement over GPT-4 in context utilization on MCQ data. Our approach was also able to address drug repurposing questions, returning meaningful repurposing suggestions. In summary, the proposed framework combines explicit and implicit knowledge of KG and LLM, respectively, in an optimized fashion, thus enhancing the adaptability of general-purpose LLMs to tackle domain-specific questions in a unified framework.Comment: 28 pages, 5 figures, 2 tables, 1 supplementary fil

    Locus for severity implicates CNS resilience in progression of multiple sclerosis

    Get PDF
    Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) that results in significant neurodegeneration in the majority of those affected and is a common cause of chronic neurological disability in young adults(1,2). Here, to provide insight into the potential mechanisms involved in progression, we conducted a genome-wide association study of the age-related MS severity score in 12,584 cases and replicated our findings in a further 9,805 cases. We identified a significant association with rs10191329 in the DYSF-ZNF638 locus, the risk allele of which is associated with a shortening in the median time to requiring a walking aid of a median of 3.7 years in homozygous carriers and with increased brainstem and cortical pathology in brain tissue. We also identified suggestive association with rs149097173 in the DNM3-PIGC locus and significant heritability enrichment in CNS tissues. Mendelian randomization analyses suggested a potential protective role for higher educational attainment. In contrast to immune-driven susceptibility(3), these findings suggest a key role for CNS resilience and potentially neurocognitive reserve in determining outcome in MS

    Ensemble machine learning reveals key features for diabetes duration from electronic health records

    No full text
    Diabetes is a metabolic disorder that affects more than 420 million of people worldwide, and it is caused by the presence of a high level of sugar in blood for a long period. Diabetes can have serious long-term health consequences, such as cardiovascular diseases, strokes, chronic kidney diseases, foot ulcers, retinopathy, and others. Even if common, this disease is uneasy to spot, because it often comes with no symptoms. Especially for diabetes type 2, that happens mainly in the adults, knowing how long the diabetes has been present for a patient can have a strong impact on the treatment they can receive. This information, although pivotal, might be absent: for some patients, in fact, the year when they received the diabetes diagnosis might be well-known, but the year of the disease unset might be unknown. In this context, machine learning applied to electronic health records can be an effective tool to predict the past duration of diabetes for a patient. In this study, we applied a regression analysis based on several computational intelligence methods to a dataset of electronic health records of 73 patients with diabetes type 1 with 20 variables and another dataset of records of 400 patients of diabetes type 2 with 49 variables. Among the algorithms applied, Random Forests was able to outperform the other ones and to efficiently predict diabetes duration for both the cohorts, with the regression performances measured through the coefficient of determination R2. Afterwards, we applied the same method for feature ranking, and we detected the most relevant factors of the clinical records correlated with past diabetes duration: age, insulin intake, and body-mass index. Our study discoveries can have profound impact on clinical practice: when the information about the duration of diabetes of patient is missing, medical doctors can use our tool and focus on age, insulin intake, and body-mass index to infer this important aspect. Regarding limitations, unfortunately we were unable to find additional dataset of EHRs of patients with diabetes having the same variables of the two analyzed here, so we could not verify our findings on a validation cohort

    Time-aware Embeddings of Clinical Data using a Knowledge Graph

    No full text
    Meaningful representations of clinical data using embedding vectors is a pivotal step to invoke any machine learning (ML) algorithm for data inference. In this article, we propose a time-aware embedding approach of electronic health records onto a biomedical knowledge graph for creating machine readable patient representations. This approach not only captures the temporal dynamics of patient clinical trajectories, but also enriches it with additional biological information from the knowledge graph. To gauge the predictivity of this approach, we propose an ML pipeline called TANDEM (Temporal and Non-temporal Dynamics Embedded Model) and apply it on the early detection of Parkinson’s disease. TANDEM results in a classification AUC score of 0.85 on unseen test dataset. These predictions are further explained by providing a biological insight using the knowledge graph. Taken together, we show that temporal embeddings of clinical data could be a meaningful predictive representation for downstream ML pipelines in clinical decision-making
    corecore