18 research outputs found
Recommended from our members
Large batch dimensional metrology demonstrated in the example of a LIGA fabricated spring.
Deep x-ray lithography in combination with electroforming is capable of producing high precision metal parts in small lot series. This study deals with a high aspect ratio structure with overall dimensions on the order of 10 mm x 7 mm x 1.5 mm, with the smallest line width being 150 {micro}m. The lateral deviation from the design is to be kept to a minimum, preferably below 5 {micro}m. To ensure adequate quality control, a semi-automated metrology technique has been established to measure all parts. While the paper will give a brief overview of all involved techniques, it focuses on the method to measure the top and bottom of the parts and the top of geometries following the process. The instrument used is a View Engineering Voyager V6x12 microscope, which is fully programmable. The microscope allows direct measurement of geometries but also is capable of saving all captured data as point clouds. These point clouds play a central role when evaluating part geometry. After measuring the part, the point cloud is compared to the computer aided design (CAD) contour of the part, using a commercially available software package. The challenge of proper edge lighting on a nickel alloy part is evaluated by varying lighting conditions systematically. Results of two conditions are presented along with a set of optimized parameters. With the introduced set of tools, process flow can be monitored by measuring geometries, e.g. linewidths in every step of the process line. An example for such analysis is given. After delivery of a large batch of parts, extensive numbers of datasets were available allowing the evaluation of the variation of part geometries. Discussed in detail is the deviation from part top to part bottom geometries indicating swelling of the PMMA mold in the electroplating bath
Recommended from our members
Final-part metrology for LIGA springs, Build Group 1.
The LIGA spring is a recently designed part for defense program applications. The Sandia California LIGA team has produced an initial group build of these nickel alloy parts. These are distinctive in having a macroscopic lateral size of about 1 cm, while requiring microscopic dimensional precision on the order of a few micrometers. LIGA technology capabilities at Sandia are able to manufacture such precise structures. While certain aspects of the LIGA process and its production capabilities have been dimensionally characterized in the past, [1-6] the present work is exclusive in defining a set of methods and techniques to inspect and measure final LIGA nickel alloy parts in large prototype quantities. One hundred percent inspection, meaning that every single LIGA part produced needs to be measured, ensures quality control and customer satisfaction in this prototype production run. After a general visual inspection of the parts and an x-ray check for voids, high precision dimensional metrology tools are employed. The acquired data is analyzed using both in house and commercially available software. Examples of measurements illustrating these new metrology capabilities are presented throughout the report. These examples furthermore emphasize that thorough inspection of every final part is not only essential to characterize but also improve the LIGA manufacturing process
Recommended from our members
Inspection strategy for LIGA microstructures using a programmable optical microscope.
The LIGA process has the ability to fabricate very precise, high aspect ratio mesoscale structures with microscale features [l]. The process consists of multiple steps before a final part is produced. Materials native to the LIGA process include metals and photoresists. These structures are routinely measured for quality control and process improvement. However, metrology of LIGA structures is challenging because of their high aspect ratio and edge topography. For the scale of LIGA structures, a programmable optical microscope is well suited for lateral (XU) critical dimension measurements. Using grayscale gradient image processing with sub-pixel interpolation, edges are detected and measurements are performed. As with any measurement, understanding measurement uncertainty is necessary so that appropriate conclusions are drawn from the data. Therefore, the abilities of the inspection tool and the obstacles presented by the structures under inspection should be well understood so that precision may be quantified. This report presents an inspection method for LIGA microstructures including a comprehensive assessment of the uncertainty for each inspection scenario
Recommended from our members
Separation and concentration of water-borne contaminants utilizing insulator-based dielectrophoresis.
This report focuses on and presents the capabilities of insulator-based dielectrophoresis (iDEP) microdevices for the concentration and removal of water-borne bacteria, spores and inert particles. The dielectrophoretic behavior exhibited by the different particles of interest (both biological and inert) in each of these systems was observed to be a function of both the applied electric field and the characteristics of the particle, such as size, shape, and conductivity. The results obtained illustrate the potential of glass and polymer-based iDEP devices to act as a concentrator for a front-end device with significant homeland security and industrial applications for the threat analysis of bacteria, spores, and viruses. We observed that the polymeric devices exhibit the same iDEP behavior and efficacy in the field of use as their glass counterparts, but with the added benefit of being easily mass fabricated and developed in a variety of multi-scale formats that will allow for the realization of a truly high-throughput device. These results also demonstrate that the operating characteristics of the device can be tailored through the device fabrication technique utilized and the magnitude of the electric field gradient created within the insulating structures. We have developed systems capable of handling numerous flow rates and sample volume requirements, and have produced a deployable system suitable for use in any laboratory, industrial, or clinical setting
Mammalian Elongin A complex mediates DNA-damage-induced ubiquitylation and degradation of Rpb1
The Elongin complex stimulates the rate of transcription elongation by RNA polymerase II (pol II) by suppressing transient pausing of the pol II at many sites along the DNA. Elongin is composed of a transcriptionally active A subunit and two small regulatory B and C subunits, which can form an isolable Elongin BC subcomplex. Here, we have shown that both the ubiquitylation and proteasomal degradation of the largest subunit of pol II (Rpb1) following UV-irradiation are significantly suppressed in Elongin A-deficient cells; however, in both cases suppression is rescued by transfection of wild-type Elongin A. Moreover, we have demonstrated that the Elongin A–Elongin BC complex is capable of assembling with the Cul5/Rbx2 module, and that this hetero-pentamer complex efficiently ubiquitylates Rpb1 in vitro. Mechanistic studies indicate that colocalization of Elongin A and Cul5 in cells and the interaction of Elongin A with the Ser5-phosphorylated form of Rpb1 are strongly enhanced following UV-irradiation. Taken together, our results suggest that mammalian Elongin A is directly involved in ubiquitylation and degradation of Rpb1 following DNA damage