4 research outputs found

    Impact of clinical phenotypes on management and outcomes in European atrial fibrillation patients: a report from the ESC-EHRA EURObservational Research Programme in AF (EORP-AF) General Long-Term Registry

    No full text
    Abstract Background Epidemiological studies in atrial fibrillation (AF) illustrate that clinical complexity increase the risk of major adverse outcomes. We aimed to describe European AF patients’ clinical phenotypes and analyse the differential clinical course. Methods We performed a hierarchical cluster analysis based on Ward’s Method and Squared Euclidean Distance using 22 clinical binary variables, identifying the optimal number of clusters. We investigated differences in clinical management, use of healthcare resources and outcomes in a cohort of European AF patients from a Europe-wide observational registry. Results A total of 9363 were available for this analysis. We identified three clusters: Cluster 1 (n = 3634; 38.8%) characterized by older patients and prevalent non-cardiac comorbidities; Cluster 2 (n = 2774; 29.6%) characterized by younger patients with low prevalence of comorbidities; Cluster 3 (n = 2955;31.6%) characterized by patients’ prevalent cardiovascular risk factors/comorbidities. Over a mean follow-up of 22.5 months, Cluster 3 had the highest rate of cardiovascular events, all-cause death, and the composite outcome (combining the previous two) compared to Cluster 1 and Cluster 2 (all P < .001). An adjusted Cox regression showed that compared to Cluster 2, Cluster 3 (hazard ratio (HR) 2.87, 95% confidence interval (CI) 2.27–3.62; HR 3.42, 95%CI 2.72–4.31; HR 2.79, 95%CI 2.32–3.35), and Cluster 1 (HR 1.88, 95%CI 1.48–2.38; HR 2.50, 95%CI 1.98–3.15; HR 2.09, 95%CI 1.74–2.51) reported a higher risk for the three outcomes respectively. Conclusions In European AF patients, three main clusters were identified, differentiated by differential presence of comorbidities. Both non-cardiac and cardiac comorbidities clusters were found to be associated with an increased risk of major adverse outcomes

    Additional file 1 of Clinical complexity and impact of the ABC (Atrial fibrillation Better Care) pathway in patients with atrial fibrillation: a report from the ESC-EHRA EURObservational Research Programme in AF General Long-Term Registry

    No full text
    Additional file 1: Table S1. Items Included into the Frailty Index. Table S2. Baseline Characteristics of the Cohort. Table S3. Cox Regression for the risk of major outcomes according to clinical complexity and subgroups. Table S4. Baseline characteristics according to cluster allocation. Figure S1. Kaplan Meier Curves for the risk of MACE according to cluster analysis. Figure S2. Kaplan Meier Curves for the risk of composite outcome according to cluster analysis. Figure S3. Delay of Event analysis for MACE, ABC adherent vs. non-adherent in cluster 1 subgroup. Figure S4. Delay of Event analysis for Composite Outcome, ABC adherent vs. non-adherent in cluster 1 subgroup

    Impact of methodological choices in comparative effectiveness studies: application in natalizumab versus fingolimod comparison among patients with multiple sclerosis

    No full text
    Abstract Background Natalizumab and fingolimod are used as high-efficacy treatments in relapsing–remitting multiple sclerosis. Several observational studies comparing these two drugs have shown variable results, using different methods to control treatment indication bias and manage censoring. The objective of this empirical study was to elucidate the impact of methods of causal inference on the results of comparative effectiveness studies. Methods Data from three observational multiple sclerosis registries (MSBase, the Danish MS Registry and French OFSEP registry) were combined. Four clinical outcomes were studied. Propensity scores were used to match or weigh the compared groups, allowing for estimating average treatment effect for treated or average treatment effect for the entire population. Analyses were conducted both in intention-to-treat and per-protocol frameworks. The impact of the positivity assumption was also assessed. Results Overall, 5,148 relapsing–remitting multiple sclerosis patients were included. In this well-powered sample, the 95% confidence intervals of the estimates overlapped widely. Propensity scores weighting and propensity scores matching procedures led to consistent results. Some differences were observed between average treatment effect for the entire population and average treatment effect for treated estimates. Intention-to-treat analyses were more conservative than per-protocol analyses. The most pronounced irregularities in outcomes and propensity scores were introduced by violation of the positivity assumption. Conclusions This applied study elucidates the influence of methodological decisions on the results of comparative effectiveness studies of treatments for multiple sclerosis. According to our results, there are no material differences between conclusions obtained with propensity scores matching or propensity scores weighting given that a study is sufficiently powered, models are correctly specified and positivity assumption is fulfilled

    Impact of methodological choices in comparative effectiveness studies: application in natalizumab versus fingolimod comparison among patients with multiple sclerosis

    No full text
    Abstract Background Natalizumab and fingolimod are used as high-efficacy treatments in relapsing–remitting multiple sclerosis. Several observational studies comparing these two drugs have shown variable results, using different methods to control treatment indication bias and manage censoring. The objective of this empirical study was to elucidate the impact of methods of causal inference on the results of comparative effectiveness studies. Methods Data from three observational multiple sclerosis registries (MSBase, the Danish MS Registry and French OFSEP registry) were combined. Four clinical outcomes were studied. Propensity scores were used to match or weigh the compared groups, allowing for estimating average treatment effect for treated or average treatment effect for the entire population. Analyses were conducted both in intention-to-treat and per-protocol frameworks. The impact of the positivity assumption was also assessed. Results Overall, 5,148 relapsing–remitting multiple sclerosis patients were included. In this well-powered sample, the 95% confidence intervals of the estimates overlapped widely. Propensity scores weighting and propensity scores matching procedures led to consistent results. Some differences were observed between average treatment effect for the entire population and average treatment effect for treated estimates. Intention-to-treat analyses were more conservative than per-protocol analyses. The most pronounced irregularities in outcomes and propensity scores were introduced by violation of the positivity assumption. Conclusions This applied study elucidates the influence of methodological decisions on the results of comparative effectiveness studies of treatments for multiple sclerosis. According to our results, there are no material differences between conclusions obtained with propensity scores matching or propensity scores weighting given that a study is sufficiently powered, models are correctly specified and positivity assumption is fulfilled
    corecore