3,149 research outputs found
Privacy Preserving Multi-Server k-means Computation over Horizontally Partitioned Data
The k-means clustering is one of the most popular clustering algorithms in
data mining. Recently a lot of research has been concentrated on the algorithm
when the dataset is divided into multiple parties or when the dataset is too
large to be handled by the data owner. In the latter case, usually some servers
are hired to perform the task of clustering. The dataset is divided by the data
owner among the servers who together perform the k-means and return the cluster
labels to the owner. The major challenge in this method is to prevent the
servers from gaining substantial information about the actual data of the
owner. Several algorithms have been designed in the past that provide
cryptographic solutions to perform privacy preserving k-means. We provide a new
method to perform k-means over a large set using multiple servers. Our
technique avoids heavy cryptographic computations and instead we use a simple
randomization technique to preserve the privacy of the data. The k-means
computed has exactly the same efficiency and accuracy as the k-means computed
over the original dataset without any randomization. We argue that our
algorithm is secure against honest but curious and passive adversary.Comment: 19 pages, 4 tables. International Conference on Information Systems
Security. Springer, Cham, 201
Multicanonical Study of the 3D Ising Spin Glass
We simulated the Edwards-Anderson Ising spin glass model in three dimensions
via the recently proposed multicanonical ensemble. Physical quantities such as
energy density, specific heat and entropy are evaluated at all temperatures. We
studied their finite size scaling, as well as the zero temperature limit to
explore the ground state properties.Comment: FSU-SCRI-92-121; 7 pages; sorry, no figures include
A New Approach to Spin Glass Simulations
We present a recursive procedure to calculate the parameters of the recently
introduced multicanonical ensemble and explore the approach for spin glasses.
Temperature dependence of the energy, the entropy and other physical quantities
are easily calculable and we report results for the zero temperature limit. Our
data provide evidence that the large increase of the ergodicity time is
greatly improved. The multicanonical ensemble seems to open new horizons for
simulations of spin glasses and other systems which have to cope with
conflicting constraints
Multiwavelength Observations of 1ES 1959+650, One Year After the Strong Outburst of 2002
In April-May 2003, the blazar 1ES 1959+650 showed an increased level of X-ray
activity. This prompted a multiwavelength observation campaign with the Whipple
10 m gamma-ray telescope, the Rossi X-ray Timing Explorer, the Bordeaux Optical
Observatory, and the University of Michigan Radio Astrophysical Observatory. We
present the multiwavelength data taken from May 2, 2003 to June 7, 2003 and
compare the source characteristics with those measured during observations
taken during the years 2000 and 2002. The X-ray observations gave a data set
with high signal-to-noise light curves and energy spectra; however, the
gamma-ray observations did not reveal a major TeV gamma-ray flare. Furthermore,
we find that the radio and optical fluxes do not show statistically significant
deviations from those measured during the 2002 flaring periods. While the X-ray
flux and X-ray photon index appear correlated during subsequent observations,
the apparent correlation evolved significantly between the years 2000, 2002,
and 2003. We discuss the implications of this finding for the mechanism that
causes the flaring activity.Comment: 17 pages, 6 figures, 2 table
A Multi-wavelength View of the TeV Blazar Markarian 421: Correlated Variability, Flaring, and Spectral Evolution
We report results from a multi-wavelength monitoring campaign on Mrk 421 over
the period of 2003-2004. The source was observed simultaneously at TeV and
X-ray energies, with supporting observations frequently carried out at optical
and radio wavelengths. The large amount of simultaneous data has allowed us to
examine the variability of Mrk 421 in detail. The variabilities are generally
correlated between the X-ray and gamma-ray bands, although the correlation
appears to be fairly loose. The light curves show the presence of flares with
varying amplitudes on a wide range of timescales both at X-ray and TeV
energies. Of particular interest is the presence of TeV flares that have no
coincident counterparts at longer wavelengths, because the phenomenon seems
difficult to understand in the context of the proposed emission models for TeV
blazars. We have also found that the TeV flux reached its peak days before the
X-ray flux during a giant flare in 2004. Such a difference in the development
of the flare presents a further challenge to the emission models. Mrk 421
varied much less at optical and radio wavelengths. Surprisingly, the normalized
variability amplitude in optical seems to be comparable to that in radio,
perhaps suggesting the presence of different populations of emitting electrons
in the jet. The spectral energy distribution (SED) of Mrk 421 is seen to vary
with flux, with the two characteristic peaks moving toward higher energies at
higher fluxes. We have failed to fit the measured SEDs with a one-zone SSC
model; introducing additional zones greatly improves the fits. We have derived
constraints on the physical properties of the X-ray/gamma-ray flaring regions
from the observed variability (and SED) of the source. The implications of the
results are discussed. (Abridged)Comment: 32 pages, 12 figures, to appear in Ap
Multiwavelength Observations of the Blazar Mrk 421 in December 2002 and January 2003
We report on a multiwavelength campaign on the TeV gamma-ray blazar Markarian
(Mrk) 421 performed during December 2002 and January 2003. These target of
opportunity observations were initiated by the detection of X-ray and TeV
gamma-ray flares with the All Sky Monitor (ASM) on board the Rossi X-ray Timing
Explorer (RXTE) and the 10 m Whipple gamma-ray telescope.The campaign included
observational coverage in the radio (University of Michigan Radio Astronomy
Observatory), optical (Boltwood, La Palma KVA 0.6m, WIYN 0.9m), X-ray (RXTE
pointed telescopes), and TeV gamma-ray (Whipple and HEGRA) bands.
At TeV energies, the observations revealed several flares at intermediate
flux levels, peaking between 1 and 1.5 times the flux from the Crab Nebula.
While the time averaged spectrum can be fitted with a single power law of
photon index Gamma =2.8, we find some evidence for spectral variability.
Confirming earlier results, the campaign reveals a rather loose correlation
between the X-ray and TeV gamma-ray fluxes. In one case, a very strong X-ray
flare is not accompanied by a comparable TeV gamma-ray flare. Although the
source flux was variable in the optical and radio bands, the sparse sampling of
the optical and radio light curves does not allow us to study the correlation
properties in detail.
We present a simple analysis of the data with a synchrotron-self Compton
model, emphasizing that models with very high Doppler factors and low magnetic
fields can describe the data.Comment: Accepted for publication in the Astrophysical Journa
A Search for TeV Gamma-Ray Emission from High-Peaked Flat Spectrum Radio Quasars Using the Whipple Air-Cherenkov Telescope
Blazars have traditionally been separated into two broad categories based
upon their optical emission characteristics; BL Lacs, with faint or no emission
lines, and flat spectrum radio quasars (FSRQs) with prominent, broad emission
lines. The spectral energy distribution of FSRQs has generally been thought of
as being more akin to the low-peaked BL Lacs, which exhibit a peak in the
infrared region of the spectrum, as opposed to high-peaked BL Lacs (HBLs),
which exhibit a peak in UV/X-ray region of the spectrum. All blazars currently
confirmed as sources of TeV emission are HBLs. Recent surveys have found
several FSRQs exhibiting spectral properties similar to HBLs, particularly the
synchrotron peak frequency. These objects are potential sources of TeV emission
according to several models of blazar jet emission and blazar evolution.
Measurements of TeV flux or upper limits could impact existing theories
explaining the links between different blazar types and could have a
significant impact on our understanding of the nature of objects that are
capable of TeV emission. In particular, the presence (or absence) of TeV
emission from FSRQs could confirm (or cast doubt upon) recent evolutionary
models that expect intermediate objects in a transitionary state between FSRQ
and BL Lac. The Whipple 10 meter imaging air-Cherenkov gamma-ray telescope is
well suited for TeV gamma-ray observations. Using the Whipple telescope, we
have taken data on a small selection of nearby(z<0.1 in most cases),
high-peaked FSRQs. Although one of the objects, B2 0321+33, showed marginal
evidence of flaring, no significant emission was detected. The implications of
this paucity of emission and the derived upper limits are discussed.Comment: accepted for publication in Astrophysical Journa
VERITAS Observations of the gamma-Ray Binary LS I +61 303
LS I +61 303 is one of only a few high-mass X-ray binaries currently detected
at high significance in very high energy gamma-rays. The system was observed
over several orbital cycles (between September 2006 and February 2007) with the
VERITAS array of imaging air-Cherenkov telescopes. A signal of gamma-rays with
energies above 300 GeV is found with a statistical significance of 8.4 standard
deviations. The detected flux is measured to be strongly variable; the maximum
flux is found during most orbital cycles at apastron. The energy spectrum for
the period of maximum emission can be characterized by a power law with a
photon index of Gamma=2.40+-0.16_stat+-0.2_sys and a flux above 300 GeV
corresponding to 15-20% of the flux from the Crab Nebula.Comment: accepted for publication in The Astrophysical Journa
- âŠ