41 research outputs found

    Satellite-3G Hybrid Networks: Impact of ACM and ARQ on TCP Performance

    Get PDF
    The adoption of satellite systems in providing broadband transmissions to mobile users such as trains, buses and vans is expected to be an interesting solution. The scenario we considered refers to a hybrid network architecture, where a geostationary satellite forward link and a terrestrial 3G return link are used in order to exploit both the high bandwidth of a satellite channel and the lower propagation delay of a terrestrial path. The resulting round-trip delay is much shorter than that one experienced by using both the forward and return link via satellite. This is particularly appealing for overcoming the TCP efficiency degradation in high delay-bandwidth product and error prone channels. In this hybrid scenario, we used simulation results to compare the goodput of four of the most popular TCP variants, in the presence of a GOOD-BAD satellite channel, as the one experienced by mobile users. We applied an Adaptive Coding and Modulation (ACM) technique as well, and studied its impact on TCP efficiency, when used both alone and in cooperation with an Automatic Repeat reQuest (ARQ) scheme of the Selective Repeat (SR) type with low persistency. Results obtained indicate that this hybrid architecture is advantageous for TCP transmissions in terms of average goodput, and that ACM is effective only if it is jointly used with ARQ schemes

    Wireless communication, identification and sensing technologies enabling integrated logistics: a study in the harbor environment

    Get PDF
    In the last decade, integrated logistics has become an important challenge in the development of wireless communication, identification and sensing technology, due to the growing complexity of logistics processes and the increasing demand for adapting systems to new requirements. The advancement of wireless technology provides a wide range of options for the maritime container terminals. Electronic devices employed in container terminals reduce the manual effort, facilitating timely information flow and enhancing control and quality of service and decision made. In this paper, we examine the technology that can be used to support integration in harbor's logistics. In the literature, most systems have been developed to address specific needs of particular harbors, but a systematic study is missing. The purpose is to provide an overview to the reader about which technology of integrated logistics can be implemented and what remains to be addressed in the future

    Evaluating the impact of smart technologies on harbor's logistics via BPMN modeling and simulation

    Get PDF
    A Smart Information and Communication Technology (ICT) enables a synchronized interplay of different key factors, aligning infrastructures, consumers, and governmental policy-making needs. In the harbor's logistics context, Smart ICT has been driving a multi-year wave of growth. Although there is a standalone value in the technological innovation of a task, the impact of a new smart technology is unknown without quantitative analysis methods on the end-to-end process. In this paper, we first present a review of the Smart ICT for marine container terminals, and then we propose to evaluate the impact of such Smart ICT via Business Process Model and Notation (BPMN) modeling and simulation. The proposed approach is discussed in a real-world modeling and simulation analysis, made on a pilot terminal of the Port of Leghorn (Italy)
    corecore