114 research outputs found

    Does Intensification of Grassland and Forage Use Lead to Efficient, Profitable and Sustainable Ecosystems?

    Get PDF
    The increasing demand for safe and nutritional dairy and beef products in our globalizing world, together with the needs to increase resource use efficiency and to protect biodiversity, provide strong incentives for intensification of grassland and forage use. This paper addresses the question in the title. Firstly, we present some notions about ‘intensification of agricultural production’. Secondly, we discuss the intensification of grassland-based dairy production in The Netherlands (NL), Chile and New Zealand (NZ). Finally, we arrive at some conclusions. External driving forces and ‘the law of the optimum’ provide strong incentives for intensification, i.e., for increasing the output per unit surface area and labour. The three country cases illustrate that intensification of grassland use is a global phenomenon, with winners and losers. Winners are farmers who are able to achieve a high return on investments. Losers are small farmers, who drop-out of business, unless they broaden the income-basis. The relationship between intensification and environmental impact is complex. Within certain ranges, intensification leads to increased emissions of nutrients and greenhouse gases to air and water per unit surface area, but to decreased emissions when expressed per unit of produce. The sustainability of a grassland-based ecosystem is ultimately defined by the societal appreciation of that system and by biophysical and socio-economic constraints. In conclusion, intensification may lead to more efficient and profitable, and thereby more sustainable grassland ecosystems, if the systems of departure are extensively managed, under-utilized, low-productive, over-exploited and/or unregulated systems, and the target systems meets societal demands

    Policy and practice certainty for effective uptake of diffuse pollution practices in a light touch regulated country

    Get PDF
    Although the link between agriculture and diffuse water pollution has been understood for decades, there is still a need to implement effective measures to address this issue. In countries with light-touch regulation, such as New Zealand and Australia, most efforts to promote environmental management practices have relied on voluntary initiatives such as participatory research and extension programmes; the success of which is largely dependent on farmers’ willingness and ability to adopt these practices. Increased understanding of the factors influencing farmer decision-making in this area would aid the promotion of effective advisory services. This study provides insights from 52 qualitative interviews with farmers and from observations of nine farmer meetings and field days. We qualitatively identify factors that influence farmer decision-making regarding the voluntary uptake of water quality practices and develop a typology for categorising farmers according to the factors that influence their decision-making. We find that in light-touch regulated countries certainty around policy and also around the effectiveness of practices is essential, particularly for farmers who delay action until compelled to act due to succession or regulation. The contribution of this paper is threefold: (i) it identifies factors influencing decision-making around the uptake of water quality practices in a light-touch regulated country; (ii) it develops a typology of different farmer types; and (iii) it provides recommendations on policy approaches for countries with light-touch regulation, which has potential relevance for any countries facing changes regarding their agricultural policy, such as post-Brexit policy in the UK

    High-Resolution Denitrification Kinetics in Pasture Soils Link N2O Emissions to pH, and Denitrification to C Mineralization

    Get PDF
    peer-reviewedDenitrification in pasture soils is mediated by microbial and physicochemical processes leading to nitrogen loss through the emission of N2O and N2. It is known that N2O reduction to N2 is impaired by low soil pH yet controversy remains as inconsistent use of soil pH measurement methods by researchers, and differences in analytical methods between studies, undermine direct comparison of results. In addition, the link between denitrification and N2O emissions in response to carbon (C) mineralization and pH in different pasture soils is still not well described. We hypothesized that potential denitrification rate and aerobic respiration rate would be positively associated with soils. This relationship was predicted to be more robust when a high resolution analysis is performed as opposed to a single time point comparison. We tested this by characterizing 13 different temperate pasture soils from northern and southern hemispheres sites (Ireland and New Zealand) using a fully automated-high-resolution GC detection system that allowed us to detect a wide range of gas emissions simultaneously. We also compared the impact of using different extractants for determining pH on our conclusions. In all pH measurements, soil pH was strongly and negatively associated with both N2O production index (IN2O) and N2O/(N2O+N2) product ratio. Furthermore, emission kinetics across all soils revealed that the denitrification rates under anoxic conditions (NO+N2O+N2 μmol N/h/vial) were significantly associated with C mineralization (CO2 μmol/h/vial) measured both under oxic (r2 = 0.62, p = 0.0015) and anoxic (r2 = 0.89, p<0.0001) conditions.This work was funded by the New Zealand Government through the New Zealand Fund for Global Partnerships in Livestock Emissions Research to support the objectives of the Livestock Research Group of the Global Research Alliance on Agricultural Greenhouse Gases (Agreement number: 16084) awarded to SEM and the University of Otago

    Phylogenetic and functional potential links pH and N2O emissions in pasture soils

    Get PDF
    This work was funded by the New Zealand Government through the New Zealand Fund for Global Partnerships in Livestock Emissions Research to support the objectives of the Livestock Research Group of the Global Research Alliance on Agricultural Greenhouse Gases (Agreement number: 16084) awarded to SEM and the University of Otago.peer-reviewedDenitrification is mediated by microbial, and physicochemical, processes leading to nitrogen loss via N2O and N2 emissions. Soil pH regulates the reduction of N2O to N2, however, it can also affect microbial community composition and functional potential. Here we simultaneously test the link between pH, community composition, and the N2O emission ratio (N2O/(NO + N2O + N2)) in 13 temperate pasture soils. Physicochemical analysis, gas kinetics, 16S rRNA amplicon sequencing, metagenomic and quantitative PCR (of denitrifier genes: nirS, nirK, nosZI and nosZII) analysis were carried out to characterize each soil. We found strong evidence linking pH to both N2O emission ratio and community changes. Soil pH was negatively associated with N2O emission ratio, while being positively associated with both community diversity and total denitrification gene (nir & nos) abundance. Abundance of nosZII was positively linked to pH, and negatively linked to N2O emissions. Our results confirm that pH imposes a general selective pressure on the entire community and that this results in changes in emission potential. Our data also support the general model that with increased microbial diversity efficiency increases, demonstrated in this study with lowered N2O emission ratio through more efficient conversion of N2O to N2.New Zealand Fund for Global Partnerships in Livestock Emissions Researc

    Antifungal rhizosphere bacteria can increase as response to the presence of saprotrophic fungi

    Get PDF
    Acknowledgments: Funding was provided by the Netherlands Organisation for Scientific Research (NWO) in the form of a personal Veni grant to A.v.d.W. This is publication number 5923 of the NIOO-KNAW Netherlands Institute of Ecology. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    The sooner the better: clinical and neural correlates of impulsive choice in Tourette disorder.

    Get PDF
    Reward sensitivity has been suggested as one of the central pathophysiological mechanisms in Tourette disorder. However, the subjective valuation of a reward by introduction of delay has received little attention in Tourette disorder, even though it has been suggested as a trans-diagnostic feature of numerous neuropsychiatric disorders. We aimed to assess delay discounting in Tourette disorder and to identify its brain functional correlates. We evaluated delayed discounting and its brain functional correlates in a large group of 54 Tourette disorder patients and 31 healthy controls using a data-driven approach. We identified a subgroup of 29 patients with steeper reward discounting, characterised by a higher burden of impulse-control disorders and a higher level of general impulsivity compared to patients with normal behavioural performance or to controls. Reward discounting was underpinned by resting-state activity of a network comprising the orbito-frontal, cingulate, pre-supplementary motor area, temporal and insular cortices, as well as ventral striatum and hippocampus. Within this network, (i) lower connectivity of pre-supplementary motor area with ventral striatum predicted a higher impulsivity and a steeper reward discounting and (ii) a greater connectivity of pre-supplementary motor area with anterior insular cortex predicted steeper reward discounting and more severe tics. Overall, our results highlight the heterogeneity of the delayed reward processing in Tourette disorder, with steeper reward discounting being a marker of burden in impulsivity and impulse control disorders, and the pre-supplementary motor area being a hub region for the delay discounting, impulsivity and tic severity

    Impulsive prepotent actions and tics in Tourette disorder underpinned by a common neural network.

    Get PDF
    Tourette disorder (TD), which is characterized by motor and vocal tics, is not in general considered as a product of impulsivity, despite a frequent association with attention deficit hyperactivity disorder and impulse control disorders. It is unclear which type of impulsivity, if any, is intrinsically related to TD and specifically to the severity of tics. The waiting type of motor impulsivity, defined as the difficulty to withhold a specific action, shares some common features with tics. In a large group of adult TD patients compared to healthy controls, we assessed waiting motor impulsivity using a behavioral task, as well as structural and functional underpinnings of waiting impulsivity and tics using multi-modal neuroimaging protocol. We found that unmedicated TD patients showed increased waiting impulsivity compared to controls, which was independent of comorbid conditions, but correlated with the severity of tics. Tic severity did not account directly for waiting impulsivity, but this effect was mediated by connectivity between the right orbito-frontal cortex with caudate nucleus bilaterally. Waiting impulsivity in unmedicated patients with TD also correlated with a higher gray matter signal in deep limbic structures, as well as connectivity with cortical and with cerebellar regions on a functional level. Neither behavioral performance nor structural or functional correlates were related to a psychometric measure of impulsivity or impulsive behaviors in general. Overall, the results suggest that waiting impulsivity in TD was related to tic severity, to functional connectivity of orbito-frontal cortex with caudate nucleus and to structural changes within limbic areas

    Impact of nitrogen compounds on fungal and bacterial contributions to codenitrification in a pasture soil

    Get PDF
    peer-reviewedRuminant urine patches on grazed grassland are a signifcant source of agricultural nitrous oxide (N2O) emissions. Of the many biotic and abiotic N2O production mechanisms initiated following urine-urea deposition, codenitrifcation resulting in the formation of hybrid N2O, is one of the least understood. Codenitrifcation forms hybrid N2O via biotic N-nitrosation, co-metabolising organic and inorganic N compounds (N substrates) to produce N2O. The objective of this study was to assess the relative signifcance of diferent N substrates on codenitrifcation and to determine the contributions of fungi and bacteria to codenitrifcation. 15N-labelled ammonium, hydroxylamine (NH2OH) and two amino acids (phenylalanine or glycine) were applied, separately, to sieved soil mesocosms eight days after a simulated urine event, in the absence or presence of bacterial and fungal inhibitors. Soil chemical variables and N2O fuxes were monitored and the codenitrifed N2O fuxes determined. Fungal inhibition decreased N2O fuxes by ca. 40% for both amino acid treatments, while bacterial inhibition only decreased the N2O fux of the glycine treatment, by 14%. Hydroxylamine (NH2OH) generated the highest N2O fuxes which declined with either fungal or bacterial inhibition alone, while combined inhibition resulted in a 60% decrease in the N2O fux. All the N substrates examined participated to some extent in codenitrifcation. Trends for codenitrifcation under the NH2OH substrate treatment followed those of total N2O fuxes (85.7% of total N2O fux). Codenitrifcation fuxes under non-NH2OH substrate treatments (0.7–1.2% of total N2O fux) were two orders of magnitude lower, and signifcant decreases in these treatments only occurred with fungal inhibition in the amino acid substrate treatments. These results demonstrate that in situ studies are required to better understand the dynamics of codenitrifcation substrates in grazed pasture soils and the associated role that fungi have with respect to codenitrifcation
    corecore