6,223 research outputs found
Near-arcsecond resolution observations of the hot corino of the solar type protostar IRAS 16293-2422
Complex organic molecules have previously been discovered in solar type
protostars, raising the questions of where and how they form in the envelope.
Possible formation mechanisms include grain mantle evaporation, interaction of
the outflow with its surroundings or the impact of UV/X-rays inside the
cavities. In this Letter we present the first interferometric observations of
two complex molecules, CH3CN and HCOOCH3, towards the solar type protostar
IRAS16293-2422. The images show that the emission originates from two compact
regions centered on the two components of the binary system. We discuss how
these results favor the grain mantle evaporation scenario and we investigate
the implications of these observations for the chemical composition and
physical and dynamical state of the two components.Comment: 5 pages (apjemulate), 2 figures; accepted by ApJ
The census of complex organic molecules in the solar type protostar IRAS16293-2422
Complex Organic Molecules (COMs) are considered crucial molecules, since they
are connected with organic chemistry, at the basis of the terrestrial life.
More pragmatically, they are molecules in principle difficult to synthetize in
the harsh interstellar environments and, therefore, a crucial test for
astrochemical models. Current models assume that several COMs are synthesised
on the lukewarm grain surfaces (30-40 K), and released in the gas
phase at dust temperatures 100 K. However, recent detections of COMs
in 20 K gas demonstrate that we still need important pieces to
complete the puzzle of the COMs formation. We present here a complete census of
the oxygen and nitrogen bearing COMs, previously detected in different ISM
regions, towards the solar type protostar IRAS16293-2422. The census was
obtained from the millimeter-submillimeter unbiased spectral survey TIMASSS.
Six COMs, out of the 29 searched for, were detected: methyl cyanide, ketene,
acetaldehyde, formamide, dimethyl ether, and methyl formate. The multifrequency
analysis of the last five COMs provides clear evidence that they are present in
the cold (30 K) envelope of IRAS16293-2422, with abundances 0.03-2
. Our data do not allow to support the hypothesis that the
COMs abundance increases with increasing dust temperature in the cold envelope,
as expected if COMs were predominately formed on the lukewarm grain surfaces.
Finally, when considering also other ISM sources, we find a strong correlation
over five orders of magnitude, between the methyl formate and dimethyl ether
and methyl formate and formamide abundances, which may point to a link between
these two couples of species, in cold and warm gas
Molecular ions in the protostellar shock L1157-B1
We perform a complete census of molecular ions with an abundance larger than
1e-10 in the protostellar shock L1157-B1 by means of an unbiased
high-sensitivity survey obtained with the IRAM-30m and Herschel/HIFI. By means
of an LVG radiative transfer code the gas physical conditions and fractional
abundances of molecular ions are derived. The latter are compared with
estimates of steady-state abundances in the cloud and their evolution in the
shock calculated with the chemical model Astrochem. We detect emission from
HCO+, H13CO+, N2H+, HCS+, and, for the first time in a shock, from HOCO+, and
SO+. The bulk of the emission peaks at blueshifted velocity, ~ 0.5-3 km/s with
respect to systemic, has a width of ~ 4-8 km/s, and is associated with the
outflow cavities (T_kin ~ 20-70 K, n(H2) ~ 1e5 cm-3). Observed HCO+ and N2H+
abundances are in agreement with steady-state abundances in the cloud and with
their evolution in the compressed and heated gas in the shock for cosmic rays
ionization rate Z = 3e-16 s-1. HOCO+, SO+, and HCS+ observed abundances,
instead, are 1-2 orders of magnitude larger than predicted in the cloud; on the
other hand they are strongly enhanced on timescales shorter than the shock age
(~2000 years) if CO2, S or H2S, and OCS are sputtered off the dust grains in
the shock. The performed analysis indicates that HCO+ and N2H+ are a fossil
record of pre-shock gas in the outflow cavity, while HOCO+, SO+, and HCS+ are
effective shock tracers and can be used to infer the amount of CO2 and
sulphur-bearing species released from dust mantles in the shock. The observed
HCS+ (and CS) abundance indicates that OCS should be one of the main sulphur
carrier on grain mantles. However, the OCS abundance required to fit the
observations is 1-2 orders of magnitude larger than observed. Further studies
are required to fully understand the chemistry of sulphur-bearing species.Comment: 12 pages, 5 figures, accepted by A&
The Foggy Disks Surrounding Herbig Ae Stars: a Theoretical Study of the H2O Line Spectra
Water is a key species in many astrophysical environments, but it is
particularly important in proto-planetary disks. So far,observations of water
in these objects have been scarce, but the situation should soon change thanks
to the Herschel satellite. We report here a theoretical study of the water line
spectrum of a proto-planetary disk surrounding Ae stars. We show that several
lines will be observable with the HIFI instrument onboard the Herschel Space
Observatory. We predict that some maser lines could also be observable with
ground telescopes and we discuss how the predictions depend not only on the
adopted physical and chemical model but also on the set of collisional
coefficients used and on the H2 ortho to para ratio through its effect on
collisional excitation. This makes the water lines observations a powerful, but
dangerous -if misused- diagnostic tool.Comment: Accepted for publication in ApJ Letter
The solar type protostar IRAS16293-2422: new constraints on the physical structure
Context: The low mass protostar IRAS16293-2422 is a prototype Class 0 source
with respect to the studies of the chemical structure during the initial phases
of life of Solar type stars. Aims: In order to derive an accurate chemical
structure, a precise determination of the source physical structure is
required. The scope of the present work is the derivation of the structure of
IRAS16293-2422. Methods: We have re-analyzed all available continuum data
(single dish and interferometric, from millimeter to MIR) to derive accurate
density and dust temperature profiles. Using ISO observations of water, we have
also reconstructed the gas temperature profile. Results: Our analysis shows
that the envelope surrounding IRAS16293-2422 is well described by the Shu
"inside-out" collapsing envelope model or a single power-law density profile
with index equal to 1.8. In contrast to some previous studies, our analysis
does not show evidence of a large (>/- 800 AU in diameter) cavity. Conclusions:
Although IRAS16293-2422 is a multiple system composed by two or three objects,
our reconstruction will be useful to derive the chemical structure of the large
cold envelope surrounding these objects and the warm component, treated here as
a single source, from single-dish observations of molecular emission
New quantum chemical computations of formamide deuteration support a gas-phase formation of this prebiotic molecule
Based on recent work, formamide might be a potentially very important
molecule in the emergence of terrestrial life. Although detected in the
interstellar medium for decades, its formation route is still debated, whether
in the gas phase or on the dust grain surfaces. Molecular deuteration has
proven to be, in other cases, an efficient way to identify how a molecule is
synthesised. For formamide, new published observations towards the
IRAS16293-2422 B hot corino show that its three deuterated forms have all the
same deuteration ratio, 2--5%, and that this is a factor 3--8 smaller than that
measured for H2CO towards the IRAS16293-2422 protostar. Following a previous
work on the gas-phase formamide formation via the reaction NH2 + H2CO -> HCONH2
+ H, we present here new calculations of the rate coefficients for the
production of monodeuterated formamide through the same reaction, starting from
monodeuterated NH2 or H2CO. Some misconceptions regarding our previous
treatment of the reaction are also cleared up. The results of the new
computations show that, at the 100 K temperature of the hot corino, the rate of
deuteration of the three forms is the same, within 20%. On the contrary, the
reaction between non-deuterated species proceeds three times faster than that
with deuterated ones. These results confirm that a gas-phase route for the
formation of formamide is perfectly in agreement with the available
observations.Comment: MNRAS in pres
First measurements of 15N fractionation in N2H+ toward high-mass star forming cores
We report on the first measurements of the isotopic ratio 14N/15N in N2H+
toward a statistically significant sample of high-mass star forming cores. The
sources belong to the three main evolutionary categories of the high-mass star
formation process: high-mass starless cores, high-mass protostellar objects,
and ultracompact HII regions. Simultaneous measurements of 14N/15N in CN have
been made. The 14N/15N ratios derived from N2H+ show a large spread (from ~180
up to ~1300), while those derived from CN are in between the value measured in
the terrestrial atmosphere (~270) and that of the proto-Solar nebula (~440) for
the large majority of the sources within the errors. However, this different
spread might be due to the fact that the sources detected in the N2H+
isotopologues are more than those detected in the CN ones. The 14N/15N ratio
does not change significantly with the source evolutionary stage, which
indicates that time seems to be irrelevant for the fractionation of nitrogen.
We also find a possible anticorrelation between the 14N/15N (as derived from
N2H+) and the H/D isotopic ratios. This suggests that 15N enrichment could not
be linked to the parameters that cause D enrichment, in agreement with the
prediction by recent chemical models. These models, however, are not able to
reproduce the observed large spread in 14N/15N, pointing out that some
important routes of nitrogen fractionation could be still missing in the
models.Comment: 2 Figures, accepted for publication in ApJ
Hyperentanglement witness
A new criterium to detect the entanglement present in a {\it hyperentangled
state}, based on the evaluation of an entanglement witness, is presented. We
show how some witnesses recently introduced for graph states, measured by only
two local settings, can be used in this case. We also define a new witness
that improves the resistance to noise by increasing the number of local
measurements.Comment: 6 pages, 2 figures, RevTex. v2: new title, minor changes in the
explanation of the witness for hyperentangled states, more comments in the
conclusions sectio
- …